Alternative plasmonic materials of Transparent Nitrides and Conductive Oxides (TNCOs) including Indium Tin Oxide (ITO), Al-doped ZnO (AZO) and Titanium Nitride (TiN), have been proposed as novel material platforms for Si-compatible plasmonics and metamaterials, showing enhanced light-matter interaction over a broad spectral range.
It has been recently shown that these materials feature reduced optical losses compared with conventional noble metals such as Au and Ag in the visible and near-infrared spectral range. However, it is still an open challenge to tailor the structural and optical properties of these materials, and to further reduce their optical losses, in order to effectively utilize them in photonic devices. In this thesis work, I demonstrate wide tunability of the optical and structural properties of ITO, AZO and TiN thin films, by using post-deposition annealing treatments, enabling significant reduction of their optical losses. By measuring the optical bandgaps of the investigated materials, I show that the tunability of the optical properties originates from the modulation of the free carrier concentration induced by the annealing treatment. Moreover, I perform XRD characterization of the fabricated films, indicating that the annealing also effectively tunes the grain size, which is consistent with the change of the optical properties. Eventually, I investigate the role of the annealing gases for ITO and AZO, demonstrating that free-carrier modulation in ITO and AZO is due to the change in the density of oxygen vacancies after post-deposition annealing.
In particular, TNCOs possess epsilon-near-zero (ENZ) condition in near-infrared range with optical loss ε^"<1, thus providing enhanced internal fields in the medium at the ENZ condition. In collaboration with Prof. Nader Engheta and the previous post-doc in our group Dr. Antonio Capretti, we demonstrate enhanced second-harmonic generation (SHG) and third-harmonic generation (THG) from ITO thin films driven by ENZ condition. It results that the SHG generation efficiency is comparable with that of a crystalline quartz plate of thickness 0.5 mm, and that the THG generation efficiency is ∼600 times larger than crystalline silicon.
As an application for the fabricated TiN material, I investigate PL intensity and lifetime in Hyperbolic Metamaterials (HMMs) coupled with emitting Si Quantum Dots (QDs). In collaboration with Hiroshi Sugimoto in Prof. Minoru Fujii’s group and the previous post-doc in our group Dr. Sandeep Inampudi, we demonstrate up to 1.6-times enhanced decay rate of QDs emission. Photonic devices based on TNCO plasmonic materials offer an effective approach for the engineering of novel Si-based photonic devices with enhanced light-matter coupling over a broad spectral range.
As an application for the fabricated ITO, in collaboration with Hongwei Zhao in Prof. Jonathan Klamkin’s group, electro-absorption modulators are numerically investigated to show high extinction ration of greater than 6dB, while insertion loss is less than 1.3dB for wavelength range from 1.25 µm to 1.42 µm.
Additionally, we demonstrate tunable optical properties of ITO thin films in mid-infrared spectrum by thermal annealing of ITO in oxygen environment. In collaboration with Sajan Shrestha and Adam Overvig in Prof. NanFang Yu’s group, we fabricate 2D periodic arrays of ITO and show wide tuning of plasmonic resonances of ITO nanostructure from 4 µm to 10 µm. Combining with the tunability of ITO thin films in near-infrared, the ITO material platform provides a promising method for the control and engineering of Si-based tunable plasmonic and metamaterial devices in the infrared spectrum.
Finally, in collaboration with my colleague Ren Wang, we experimentally demonstrate silicon nanodisk arrays with tunable anapole mode excitation in the visible spectrum. The proposed high index nanostructures can be used to enhance absorption rate for applications in semiconductor photodetector.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/19507 |
Date | 05 November 2016 |
Creators | Wang, Yu |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Rights | Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0014 seconds