The natural instability of hydrothermal vents creates variable environmental conditions among habitat patches. Habitat differences correspond to phenotypic variation in Ridgeia piscesae, the only ‘vent tubeworm’ on the spreading ridges of the Northeast Pacific. Ridgeia piscesae that occupy high fluid flux habitats have rapid growth rates and high reproductive output compared to tubeworms in habitats with low rates of venting fluid delivery. As recruitment occurs in all settings, worms in the “optimal habitat” may act as source populations for all habitat types. Ridgeia piscesae is a foundation species in the Endeavour Hydrothermal Vents Marine Protected Area of the Juan de Fuca Ridge.
The objective of this thesis was to assess fine scale population structure in Ridgeia piscesae within the Endeavour vent system using genetic data. Population structure was assessed by analysis of the mitochondrial COI gene in 498 individuals collected from three vent sites of the Juan de Fuca Ridge; Middle Valley (n=26), Endeavour Segment (n=444) and Axial Volcano (n=28). Genotyping using microsatellite markers was attempted but all loci developed for closely related tubeworm species failed to amplify microsatellites in Ridgeia piscesae.
Sequence analysis identified 32 mitochondrial COI haplotypes; one dominant haplotype (68%), three common haplotypes (4%-7%) and the remainder were rare (<2%). Axial Volcano was differentiated from Middle Valley and Endeavour. Within Endeavour, genetic sub-structuring of Ridgeia piscesae occurred among vent fields (Clam Bed, Main Endeavour and Mothra) and habitat types < 10 km apart. Patterns of genetic variation and coalescent based models suggested that gene flow among vent fields moved in a north to south direction in individuals from high flux habitat but from south to north in individuals from low flux habitat. Tubeworms from low flux habitat had more nucleotide polymorphisms and haplotypes than those from high flux habitats. Estimates of the number of immigrants per generation moving from high flux to low flux subpopulations was four times higher than in the reverse direction. The effective population size was estimated to be three times greater in high flux habitat when the generation times for individuals from each habitat type were considered. Demographic tests for population equilibrium identified a recent and rapidly expanding metapopulation at Endeavour.
Models of gene flow in Ridgeia piscesae reflected the general oceanographic circulation described at Endeavour. Genetic data illustrate that dispersing larvae exploit the bi-directional currents created through plume driven circulation within the Endeavour axial valley and suggest that adult position on or near chimneys may influence larval dispersal trajectories upon release. Building on known ecological and biological features, this study also showed that Ridgeia piscesae from limited and ephemeral high flux habitat act as sources to the overall metapopulation and that asymmetrical migration and habitat stability sustain high genetic diversity in low flux sinks. The overall metapopulation at Endeavour experiences frequent extinction and recolonization events, differences in individual reproductive success, and source-sink dynamics that decrease the overall effective size and genetic diversity within the population. These factors have important implications for the conservation of a foundation species. / Graduate / 0307 / 0329 / 0369 / lcpuetz@uvic.ca
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/5337 |
Date | 30 April 2014 |
Creators | Puetz, Lara |
Contributors | Tunnicliffe, Verena, Taylor, John Stewart |
Source Sets | University of Victoria |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0023 seconds