Return to search

Cat?strofes naturais no estado do Rio de Janeiro baseado em dados clim?ticos e produtos orbitais: uma abordagem estat?stica / Natural disasters in the state of Rio de Janeiro based on climatic data and orbital products: a statistical approach

Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-08-16T19:52:28Z
No. of bitstreams: 1
2017 - Givanildo de Gois.pdf: 10268407 bytes, checksum: 6b0d9ed5afee22baa701ac9aa599b1e9 (MD5) / Made available in DSpace on 2017-08-16T19:52:28Z (GMT). No. of bitstreams: 1
2017 - Givanildo de Gois.pdf: 10268407 bytes, checksum: 6b0d9ed5afee22baa701ac9aa599b1e9 (MD5)
Previous issue date: 2017-02-22 / CAPES / Few studies were based on the areas of Physical and Statistical Climatology applied to the state of Rio de Janeiro (ERJ), focused on natural disasters (droughts, floods and desertification) based on climatic data and orbital products. The time series used were 47 years (1967 to 2013) and 71 years (1943 to 2013). Both series come from 100 existing stations belonging to ANA, CPRM, INMET, SERLA and LIGHT. The temporal series (raw data) were faulty and were filled with TRMM satellite 3B43 product (1998 to 2013) and INMET climatological norm (1947 to 1997). The series were submitted to descriptive, exploratory, parametric (Shapiro-Wilks-SW and Barlett-B), non-parametric tests (Mann-Kendall-MK, Sen-Se, Pettitt and SOCUM), Box Cox transformation and analysis Grouping (AA). In addition, monthly data from the Enhanced Vegetation Index (EVI2) between 2001- 2012 with the objective of verifying the trend of increase and decrease of vegetation in the ERJ by non-parametric tests and future scenarios by the Markov Chain. Estimation of the monthly mean air temperature (Tmi) in the ERJ based on observed series and reanalyses or the composition of both, and being adjusted to the three-base linear multiple regression (RLM) and linear regression models: Bases 1 Reanalysis / NCEP), 2 (INMET / NCDC) and 3 (Reanalysis / NCEP and INMET / NCDC) between 1948 and 2015. Descriptive analysis showed a probability of occurrence above 75%. The SW and B tests presented a low significance level for p-value (? < 5%) and the hypothesis of normality and homogeneity of variances in the stations was rejected. The Box Cox transformation was effective in stabilizing the residue normality and homogeneity of variance of the monthly rainfall series of the Middle Para?ba and Serrana regions, except for the Northwest Fluminense. The high variability of ? (0.326 to 0.565) is due to the fact that most of the stations are in the Sierra do Mar slope facing the mainland, where rainfall is influenced by the interaction of topography with local and synoptic systems, only one season In the Serra do Mar slope facing the Atlantic Ocean with influence of the coastal environment and the mesoscale and synoptic systems, in the series of 71 years. Based on AA were chosen 11 stations with normality or homogeneity of variance characterized two homogeneous pluviometric groups (G1 and G2) in the ERJ. For the trend analysis, the MK test and method were shown the presence of non significant trends of rainfall increase in the annual and seasonal scales. Pettitt and SOCUM were efficient in identifying the years of possible non-significant or insignificant abrupt changes in the 71-year time series. The SOCUM test identified 39 ENSO events in groups G1 and G2. The highest percentage in the neutral events (48.72%) and the lowest in the moderate El Ni?o and La Ni?a weak and strong (5.13%). An insignificant trend of vegetation growth is observed at 75%, followed by a significant downward trend of 25% of the ERJ Government regions. The Pettitt test showed the existence of abrupt changes not significant (NS), both growth and vegetation decrease in 6 regions and significant (S) decrease in 2 regions. The predictions of changes ranging from 1 to 2 years at constant intervals (3 to 10 years) were observed in all future scenarios. Bases 1 and 2 presented the highest number of significant coefficients, according to the F test for (p-value <0.05), the exception was Base 3. The latitude variable (?1) was more significant, followed by altitude (?3 ) In all Bases. Significant values of r2 (> 0.80) and r (> 0.90) in Base 2 and Base 1 with r2 (> 0.50) and r (> 0.70). The adjusted RLM models explained most of the spatial variability of Tmi for the ERJ. The parametric tests of SW and B applied to the monthly rainfall series without treatment and to the reduced variable the normal distribution standardized to 95% of probability point to the hypotheses of non-normality and neither homogeneity of the time series. The high sensitivity of the rainfall series to the B test were observed in the eight Government regions, due to the rigor of the test. The lambda coefficients of the Box Cox transformation applied to the monthly rainfall series for data without treatment and the reduced variable of the standardized normal distribution do not present efficiency in the stabilization of the homogeneity of the variances. Confirmed by the test of B, in 99.58% and 100% of the events. The efficiency found only in the stabilization of normality in 81.33% and 81.58% of the monthly cumulative frequencies of data without treatment and the reduced variable. Moderate performance of SPI methods with untreated and Box Cox versus SPI-transformed data with reduced-box data transformed by Box Cox is evident in SPI-1, which shows the presence of significant variations of statistical parameters in the Norte, Costa Verde, Baixada Litor?nea e Metropolitana shortage, followed by low performance of the r2 coefficient in the ERJ regions. SPI-12 shows a significant high dispersion of the coefficient r, followed by a low to very low performance, and a low coefficient r2. This indicates poor accuracy of SPI index estimates in both methods. The EPE and RMSE errors do not present significant variations, in the durations of 1 and 12 months. A high variation of the rec coefficients with the index d in the SPI-1 month is verified, a poor performance of the methods with data without treatment and with transformed by Box Cox versus SPI with data of the reduced variable transformed by Box Cox, for the SPI-12 Was verified in the ERJ regions. The temporal / annual analyzes of SPI-1 and 12 in the regions show a high variability and greater intensity of SPI-1, unlike SPI-12. SPI-1 and SPI-12 in the regions show similarity in the behavior of SPI-1 and SPI-12, where the highest and lowest frequencies of droughts categorized as moderately, extremely and extremely dry were recorded in the 70, 80, 90, 2000 and in the period 2010/2013, except for the 60. Events of ENOS were observed in the study period. The Pettitt test identified the years of changes in the SPI-12 index, in 1977 (El Ni?o weak), 1984 (La Ni?a weak), 1989 (Neutral), 1992 (Neutral) and 2002 (Moderate El Ni?o). The prevailing category was close to normal in the Norte Fluminense, Baixadas Litor?neas and Costa Verde regions, followed in the other regions of Government in some parts (SW), (SSW) (SE) and (NE). The moderately dry category occurred in the regions, Metropolitana, Centro Sul Fluminense, M?dio Para?ba, Serrana and NoroesteFluminense, and the other parts in the (SW), (NW) and (NNE) portions of the ERJ. In short, the application of statistical, parametric and non-parametric tests, chain of markov, multivariate analysis are efficient tools in the evaluation of natural disasters in the ERJ. / H? poucos estudos baseados nas ?reas de Climatologia F?sica e Estat?stica aplicadas ao estado do Rio de Janeiro (ERJ), voltados para cat?strofes naturais (secas, enchentes e desertifica??o) baseado em dados clim?ticos e produtos orbitais. As s?ries temporais usadas foram de 47 anos (1967 a 2013) e 71 anos (1943 a 2013). oriundas de 100 esta??es pertencentes ? ANA, CPRM, INMET, SERLA e LIGHT. Estas s?ries (dados brutos) apresentavam falhas e foram preenchidas com produto 3B43 do sat?lite TRMM (1998 a 2013) e com as normais climatol?gicas do INMET (1947 a 1997). Para tanto elas foram submetidas ? an?lise descritiva, explorat?ria, testes param?tricos (Shapiro-Wilks-SW e Barlett-B), n?o param?tricos (Mann-Kendall-MK, M?todo de Sen -Se, Pettitt e SOCUM), transforma??o Box Cox e an?lise de agrupamento (AA). Al?m disso, foram usados dados mensais do Enhanced Vegetation Index (EVI2) entre 2001-2012 com objetivo de verificar tend?ncia de aumento e diminui??o da vegeta??o no ERJ pelos testes n?o param?tricos e os cen?rios futuros pela Cadeia de Markov. A estimativa da temperatura m?dia mensal do ar (Tmi) no ERJ, foi baseada em s?ries observadas de rean?lises ou atrav?s da composi??o de ambas e, sendo ajustadas aos modelos de regress?o linear m?ltipla (RLM) e simples (RLS) baseado em tr?s bases: Bases 1 (Rean?lise/NCEP), 2 (INMET/NCDC) e 3 (Rean?lise/NCEP e INMET/NCDC) entre 1948 a 2015. A an?lise descritiva mostrou uma probabilidade de ocorr?ncia acima de 75%, os testes SW e B apresentaram um baixo n?vel de signific?ncia para p-valor (? < 5%) e rejeitou-se a hip?tese de normalidade e homogeneidade de vari?ncias nas esta??es. A transforma??o Box Cox foi eficaz na estabiliza??o da normalidade dos res?duos e homogeneidade de vari?ncia da s?rie temporal de chuva mensal das regi?es M?dio Para?ba e Serrana, com exce??o do Noroeste Fluminense. A alta variabilidade de ? (0,326 a 0,565) ? devido ? maioria das esta??es encontram-se na vertente da Serra do Mar voltada para o continente, onde o regime de chuva ? influenciado pela intera??o da topografia com sistemas locais e sin?ticos e tendo apenas uma esta??o na vertente da Serra do Mar voltada para o Oceano Atl?ntico com influ?ncia do ambiente costeiro e dos sistemas de mesoescala e sin?ticos, na s?rie de 71 anos. Com base na AA foram escolhidas 11 esta??es com normalidade ou homogeneidade de vari?ncia, caracterizando dois grupos homog?neos pluviom?tricos (G1 e G2) no ERJ. Para a an?lise de tend?ncia, o teste MK e m?todo Se mostraram a presen?a de tend?ncias n?o significativas de aumento das chuvas nas escalas anual e sazonal, enquanto que o Pettitt e o SOCUM foram eficientes quanto ? identifica??o dos anos de poss?veis mudan?as abruptas n?o significativas ou insignificantes na s?rie temporal de 71 anos. O teste de SOCUM identificou 39 eventos de ENOS nos grupos G1 e G2, os maiores percentuais nos eventos neutros (48,72%) e os menores nos El Ni?o moderado e La Ni?a fraca e forte (5,13%). Outro resultado encotrado foi a exist?ncia de uma tend?ncia insignificante de crescimento da vegeta??o em 75%, seguido de uma tend?ncia significativa de diminui??o em 25% das regi?es pol?ticas do ERJ. J? o teste de Pettitt mostrou a exist?ncia de mudan?as bruscas n?o significativas (NS), ambos de crescimento e diminui??o da vegeta??o em 6 regi?es e significativas (S) de diminui??o em 2 regi?es. Os progn?sticos de mudan?as com varia??o de 1 a 2 anos em intervalos constante (3 a 10 anos) foram observados em todos os cen?rios futuros. As Bases 1 e 2 apresentaram o maior n?mero de coeficientes significativos, segundo O teste F para p-valor < 0,05, com exce??o para a Base 3. A vari?vel latitude (?1) foi mais significativa, seguido da altitude (?3) em todas as Bases. Foram encontrados valores significativos de r2 (>0,80) e r (> 0,90) na Base 2 e na Base 1 com r2 (>0,50) e r (>0,70). Os modelos de RLM ajustados explicaram a maior parte da variabilidade espacial da Tmi para o ERJ, enquanto que os testes param?tricos de SW e B aplicados a s?rie temporal mensal de chuva sem tratamento e ? vari?vel reduzida a distribui??o normal padronizada a 95% de probabilidade apontaram para as hip?teses de n?o-normalidade e n?o-homogeneidade da s?rie temporal. A alta sensibilidade da s?rie temporal de chuva ao teste B foram constatada nas oito regi?es pol?ticas do ERJ, devido ao rigor do teste. Os coeficientes de lambda da transforma??o Box Cox aplicada ?s s?ries temporais mensais de chuva para dados sem tratamento e a vari?vel reduzida da distribui??o normal padronizada n?o apresentam efici?ncia na estabiliza??o da homogeneidade das vari?ncias. Confirmado pelo teste de B, em 99,58% e 100% dos eventos repetitivamente. A efici?ncia constatada apena na estabiliza??o da normalidade em 81,33% e 81,58% das frequ?ncias acumuladas mensais dos dados sem tratamento e da vari?vel reduzida. Al?m disso observa-se que o desempenho moderado dos m?todos do SPI com dados sem tratamento e com os transformados pela Box Cox versus SPI com dados da vari?vel reduzida transformada pela Box Cox fica evidente no SPI-1, que mostra a presen?a de varia??es significativas dos par?metros estat?sticos nas regi?es Norte, Costa Verde, Baixada Litor?nea e Metropolitana, seguidos de baixo desempenho do coeficiente r2 nas regi?es do ERJ. J? o SPI-12 mostrou uma alta dispers?o significativa do coeficiente r, seguido de um desempenho baixo a muito baixo, e baixos valores do coeficiente r2, indicando fraca precis?o das estimativas dos ?ndices SPI em ambos os m?todos. Os erros EPE e RMSE n?o apresentaram varia??es significativas, nas dura??es de 1 e 12 meses. Contudo costatase uma alta varia??o dos coeficientes r e c com o ?ndice d no SPI-1 m?s, ressaltasse que um p?ssimo desempenho dos m?todos com dados sem tratamento e com transformados pela Box Cox versus SPI com dados da vari?vel reduzida transformada pela Box Cox, para o SPI-12 foi verificado nas regi?es do ERJ. Al?m disso, as an?lises temporal/anual dos SPI-1 e 12 nas regi?es mostra alta variabilidade e maior intensidade do SPI-1, ao contr?rio do SPI-12. No tocante a an?lise temporal dos SPI?1 e SPI?12 nas regi?es do ERJ verifica-se similaridade quanto ao comportamento dos SPI?1 e SPI?12, onde as maiores e menores frequ?ncias de eventos de secas categorizadas como moderadamente, muito e extremamente seco foram registradas nas d?cadas 1970, 1980, 1990, 2000 e no per?odo 2010/2013, com exce??o da d?cada de 1960. Eventos de ENOS foram observados no per?odo de estudo. O teste de Pettitt identificaram os anos de mudan?as do ?ndice SPI-12, em 1977 (El Ni?o fraco), 1984 (La Ni?a fraca), 1989 (Neutro), 1992 (Neutro) e 2002 (El Ni?o moderado). Prevaleceu a categoria pr?ximo ao normal nas regi?es Norte Fluminense, Baixadas Litor?neas e Costa Verde, seguido nas demais regi?es de Governo em algumas por??es (SW), (SSW) (SE) e (NE). A categoria moderadamente seca ocorreu nas regi?es, Metropolitana, Centro Sul Fluminense, M?dio Para?ba, Serrana e Noroeste Fluminense enas demais nas por??es (SW), (NW) e (NNE) do ERJ. Em suma, a aplica??o dos testes estat?sticos, param?tricos e n?o-param?tricos, cadeia de markov, an?lise multivariada s?o ferramentas eficientes na avalia??o das cat?strofes naturais no ERJ.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1966
Date22 February 2017
CreatorsGOIS, Givanildo de
ContributorsDelgado, Rafael Coll, Oliveira J?nior, Jos? Francisco de, Oliveira J?nior, Jos? Francisco de, Santos, Ednaldo Oliveira dos, Heilbron Filho, Paulo Fernando Lavalle, Pimentel, Luiz Cl?udio Gomes, Cataldi, M?rcio
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Ci?ncias Ambientais e Florestais, UFRRJ, Brasil, Instituto de Florestas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds