Return to search

Numerická analýza aproximace nepolygonální hranice u nespojité Galerkinovy metody / Numerical analysis of approximation of nonpolygonal domains for discontinuous Galerkin method

Title: Numerical analysis of approximation of nonpolygonal domains for discon- tinuous Galerkin method Author: Filip Klouda Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vít Dolejší, Ph.D., DSc., KNM MFF UK Abstract: In this work we use the discontinuous Galerkin finite element method for the semidiscretization of a nonlinear nonstationary convection-diffusion pro- blem defined on a nonpolygonal two-dimensional domain. Using so called appro- ximating curved elements we define a piecewise polynomial approximation of the boundary of the domain and a space on which we search for a solution. We study the convergence of the method considering a symmetric as well as nonsymmetric discretization of diffusion terms and with the interior and boundary penalty. The obtained results allow us to derive an error estimate for the Discontinuous Galer- kin method employing the approximating curved elements. This estimate depends on the order of the approximation of the solution and also on the order of the approximation of the boundary. We describe one possibility of the construction of the approximating curved elements with the aid of a polynomial mapping given by an interpolation of points on the boundary. We present numerical experiments. Keywords: nonlinear convection-diffusion equation, discontinuous...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304483
Date January 2012
CreatorsKlouda, Filip
ContributorsDolejší, Vít, Sobotíková, Veronika
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0015 seconds