Return to search

Design, synthesis, and evaluation of polycomb reader protein Cbx7 antagonists

Writer, eraser, and reader proteins are three classes of proteins/enzymes that add, remove, and recognize post-translational modifications (PTMs) on histone tails, respectively. The orchestrated action of these protein classes controls dynamic state of chromatin and influences gene expression. Dysregulation of these proteins are often associated with disease conditions. All three classes are targeted with small molecule inhibitors for various disease conditions. This is a promising area of research to develop therapeutics for various clinical conditions. I worked on a methyllysine reader protein Cbx7, which belong to polycomb group of proteins. Cbx7 is a chromodomain containing protein and it uses its chromodomain to recognize methyllysine partners such as H3K27me3. Aberrant expression of Cbx7 is observed in several cancers including prostate, breast, colon, thyroid, etc. Hence targeting Cbx7 with potent and selective inhibitors would be beneficial for therapeutic intervention for Cbx7 associated diseases. Here I report my work on design, synthesis, and evaluation of Cbx7 inhibitors. In my work, we identified several potent and selective inhibitors for Cbx7 and we published first-in-class antagonists for Cbx7. Few of these inhibitors were tested on cancer stem cell models. Further, I propose future work for targeting Cbx7 and other chromodomain containing proteins. / Graduate / 2018-09-04

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/8637
Date04 October 2017
CreatorsSimhadri, Chakravarthi
ContributorsHof, Fraser
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0016 seconds