Return to search

Role of the histone methyltransferase, Mll2, in embryogenesis and adult mouse

Histone methyltransferases are key players in eukaryotic gene regulation. The goal of this thesis was to study the role of the histone methyltransferase Mll2 in developing embryos and adult mice. Targeting of mouse ES cells with a multipurpose allele and blastocyst injection had previously generated a mouse line allowing analysis of Mll2 function by knock-out and conditional mutagenesis using Cre/loxP. The first part of the thesis comprised the analysis of the Mll2-/- phenotype, and included the cloning of a targeting construct to generate an ubiquitous, ligand-regulated Cre line. In the second part, we did conditional mutagenesis using the Rosa26-CreER(T2) line obtained from collaborators, and achieved complete knock-out of Mll2 in most tissues of embryos, neonates and adult mice. Mll2 is essential during embryonic development, as mutant embryos were severely growth retarded, had significant increases in apoptosis, and failed in gestation between E 9.5 and E11. Conditional removal of Mll2 protein at gastrulation (E 6.5) produced a similar phenotype at E 11. In contrast, the absence of Mll2 function after E 11 did not result in obvious defects at E16 and indicates an essential role for Mll2 between E6 and E11. Indeed, we identified a loss of expression of 3 important developmental regulators in mutants of this developmental stage: Hoxb1, Mox1 and Six3 are candidate targets for Mll2 regulation that encode homeobox type transcription factors involved in specifying cellular identity. We observed correct establishment of their developmental expression patterns, which than decay in Mll2-/- mutants at E9.5. These data concord with and extend current thoughts about the fly orthologue of Mll2, Trithorax, which suggest that it acts as an epigenetic lock in chromatin to maintain expression of certain transcription factors key to respective cellular identities, after their expression patterns have been established. After birth, Mll2 is dispensable in most tissues, as conditional knock out in neonates and adult mice did not produce any pathological findings except infertility of mutant males and females. Histological analysis of testis revealed progressive loss of spermatogonia, associated with increases in apoptosis but without overt proliferation, meiotic or differentiation defects or loss of the supporting Sertoli cells. Consequently, in addition to its regulation of homeotic genes during development, Mll2 is required for the maintenance of various mitotic cell populations including ES cells, embryonal cells and germ cells.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24553
Date12 July 2005
CreatorsGlaser, Stefan
ContributorsStewart, Francis, Buchholz, Frank, Baniahmad, Aria
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds