Return to search

Enhanced bone formation during distraction osteogenesis in FGFR3 deficient mice

Distraction Osteogenesis (DO) is a technique for bone lengthening and filling of bone defects following trauma, infection or resection of tumors. DO consists of an osteotomy of the bone to be lengthened, followed by controlled distraction of the bone segments with an external fixator until the desired lengthening is obtained (distraction phase). This is followed by the consolidation phase, during which the external fixator is kept in place until the newly formed bone in the distracted zone consolidates. This phase is long and may cause numerous problems. Ongoing research aims at finding a method to accelerate the consolidation of the newly formed bone. / Fibroblast Growth Factors (FGF) play a significant role in bone development and repair. FGF 18 has been shown to be the only FGF member to be expressed throughout both the distraction and the consolidation phases of DO. It was also reported that FGF18 is the physiological ligand of FGFR3. Therefore, we hypothesized that FGF18 and FGFR3 may have an important role in DO. / To test this hypothesis, we investigated DO in FGFR3 deficient mice (FGFR3-/-). (FGF18 deficient mice are not viable). A miniaturized DO apparatus was applied to the tibia followed by an osteotomy. Distraction began after a 5-day latency period at a rate of 0.2 mm/12 hours for 12 days. / Samples were collected at 3 time points comparing the mutants (FGFR3-/-) to their wild type litter' sates: end of distraction (17 days post-surgery), mid-consolidation (34 days post-surgery), and end of consolidation (51 days post surgery). The samples were analyzed using X-ray, DEXA, microCT, histology, biomechanical testing and Real-Time PCR. / Our results revealed that FGFR3 deficient mice showed accelerated bone formation compared to the W.T. littermates at mid-consolidation where the parameters measured revealed increased bone mineral density, bone mineral content and trabecular number in the mutant tibial samples. The newly regenerated bone consolidated faster in the FGFR3 knock-out mice and the bone was of better quality as revealed by biomechanical tests in which more force was needed to break the mutant bone because it exhibited higher resistance than the age matched wild-type sample. The marker gene expression patterns revealed an up-regulation of chondrogenic markers that suggest that the knock-out mice follow the endochondral ossification pathway during DO. All results were statistically significant. / These results show that signaling through FGFR3 acts to decrease bone formation during DO. Consequently, blocking FGFR3 may lead to accelerated bone formation in DO. This may have important clinical implications in attempts to improve the functional outcome of DO by decreasing the long duration that the external fixator has to be kept on.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112630
Date January 2008
CreatorsHamade, Fares.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Human Genetics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002731835, proquestno: AAIMR51276, Theses scanned by UMI/ProQuest.

Page generated in 0.0024 seconds