Return to search

Modeling and Testing of a Micro-Tubular Low-Temperature Fuel Cell for use in a Micro Air Vehicle

Micro air vehicles (MAVs) are small remote controlled aircraft used by military personnel for reconnaissance and are currently powered by batteries. The MAVs rely on the battery for propulsion, navigation, and reconnaissance equipment. The thrust of this research is to develop a fuel cell system capable of higher power densities, higher power to weight ratios, and increased overall power output than the batteries in use today. To this end, a feasibility study is first conducted to determine if fuel cells could be used to replace batteries as the MAV power source and what fuel cell configurations would show the best performance. Hydrogen, methanol, and formic acid fuel cells are considered, using a conventional flat-plate design and a novel micro-tubular design. Several micro-tubular fuel cells (MTFCs) are tested to show that these cells are a possibility for power production in MAVs. Those tested are developed and improved in collaboration between Luna Innovations, Inc. and the Center for Energy Systems Research at Virginia Tech and then manufactured by Luna Innovations, Inc. Also, an isothermal, lumped-parameter (LP) model for MTFCs is developed to predict behavior. The use of this LP model aids in understanding the dominant losses of the cell and ways of improving cell performance.

Results from the feasibility study indicate that by using methanol powered MTFCs a 50% increase in overall energy output is possible, while also decreasing the mass of the power production system. Through testing and an iterative design process, an increase of three orders of magnitude of the maximum power production of the MTFCs constructed by Luna Innovations, Inc., has been realized. Results of the LP MTFC model are compared with the experimental results from the MTFC testing and tubular cells from the literature. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36497
Date21 January 2008
CreatorsEvans, Richard Blaine
ContributorsMechanical Engineering, von Spakovsky, Michael R., Nelson, Douglas J., Ellis, Michael W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationThesis-Richard_Evans.pdf

Page generated in 0.0022 seconds