In this study, the flow plates of micro methanol fuel cells are designed and fabricated in-house through MEMS(Micro-Electro-Mechanical System) technology with deep UV lithography manufacturing processes (SU-8 photoresist) and micro electroforming manufacturing processes. The thesis investigates methanol and water crossover in a micro DMFC for serpentine flow field configuration. Experiments are conducted through various experiments with different operating conditions for the anode flow rate (2-10 sccm), cathode flow rate (100-500 sccm), methanol concentration (1, 2 and 3M), and temperature (25, 50 and 75¢J). Experimental results are presented in the form of polarization VI curves and PI curves under the above operating conditions. The experimental results show that the methanol and water crossover flux increases with increases in cell temperatures, methanol concentration and anode pressure drop. It is found that the fuel efficiency of the DMFC is closely related to the methanol crossover. Further examination of the relationship between the methanol crossover and cell performance reveals the possibility of reducing the methanol crossover by optimizing the anode flow rate.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0805110-141037 |
Date | 05 August 2010 |
Creators | Wu, Jyun-wei |
Contributors | Ching-Jenq Ho, Shou-Shing Hsieh, Chin-Chia Su |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0805110-141037 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0017 seconds