Return to search

Design of insect-scale flapping wing vehicles

This thesis contributes to the state of the art in integrated design of insect-scale piezoelectric actuated flapping wing vehicles through the development of novel theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of these models into a closed form design process. A comprehensive literature review of available engineered designs of miniature rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and actuator kinematics is proposed as an effective means of classifying the large variation of vehicle configurations currently under development. The most successful insect-scale vehicles developed to date have used piezoelectric actuation, system resonance for motion amplification, and passive wing pitching. A novel analytical treatment is proposed to quantify induced power losses in normal hover that accounts for the effects of non uniform downwash, wake periodicity and effective flapping disc area. Two different quasi-steady aerodynamic modelling approaches are undertaken, one based on blade element analysis and one based on lifting line theory. Both approaches are explicitly linked to the underlying flow physics and, unlike a number of competing approaches, do not require empirical data. Models have been successfully validated against experimental and numerical data from the literature. These models have allowed improved insight into the role of the wing leading-edge vortex in lift augmentation and quantification of the comparative contributions of induced and profile drag for insect-like wings in hover. Theoretical aerodynamic analysis has been used to identify a theoretical solution for the optimum planform for a flapping wing in terms of chord and twist as a function of span. It is shown that an untwisted elliptical planform minimises profile power, whereas a more highly tapered design such as that found on a hummingbird minimises induced power. Aero-optimum wing kinematics for hovering are also assessed. It is shown that for efficient flight the flapping velocity should be constant whereas for maximum effectiveness the flapping velocity should be sinusoidal. For both cases, the wing pitching at stroke reversal should be as rapid as possible. A dynamic electromechanical model of piezoelectric bending actuators has been developed and validated against data obtained from experiments undertaken as part of this thesis. An expression for the electromechanical coupling factor (EMCF) is extracted from the analytical model and is used to understand the influence of actuator design variables on actuator performance. It is found that the variation in EMCF with design variables is similar for both static and dynamic operation, however for light damping the dynamic EMCF will typically be an order of magnitude greater than for static operation. Theoretical contributions to aerodynamic and electromechanical modelling are integrated into a low order design method for propulsion system sizing. The method is unique in that aside from mass fraction estimation, the underlying models are fully physics based. The transparency of the design method provides the designer with clear insight into effects of changing core design variables such as the maximum flapping amplitude, wing mass, transmission ratio, piezoelectric characteristics on the overall design solution. Whilst the wing mass is only around 10% of the actuator mass, the effective wing mass is 16 times the effective actuator mass for a typical transmission ratio of 10 and hence the wing mass dominates the inertial contribution to the system dynamics. For optimum aerodynamic effectiveness and efficiency it is important to achieve high flapping amplitudes, however this is typically limited by the maximum allowable field strength of the piezoelectric material used in the actuator.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:644511
Date January 2015
CreatorsNabawy, Mostafa
ContributorsCrowther, William
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/design-of-insectscale-flapping-wing-vehicles(5720b8af-a755-4c54-beb6-ba6ef1a13168).html

Page generated in 0.0055 seconds