Cutting movement is still one of the main means to obtain the desired machined surface. As the most representative cutting method in subtractive manufacturing, milling is widely used in industrial production. However, the chatter induced by the dynamic interaction between machine tool and process not only reduces the accuracy of the machined workpiece, but also increases the tool wear and affects the rotary accuracy of the spindle. The stability lobe diagram can provide stable machining parameters for the technicians, and it is currently an effective way to avoid chatter. In fact, the dynamic interaction between the machine tool and process is very complicated, which involves the machine tool, milling tool, workpiece and fixture. The induced mechanism of chatter depends on different machining scenarios and is not entirely dependent on the vibration modes of milling tool. Therefore, it is important to obtain stable machining parameters and to know the dynamic surface location error distribution, which can ensure machining quality and improve machining efficiency.
In this dissertation, two methods for constructing stability lobe diagram are first introduced, and then two machining scales, macro milling and micro milling, are studied. For the macro-milling scale, the dynamic response of the in-process workpiece with time-varying modal parameters during the material removal process is analyzed. The stability lobe diagrams for thin-walled workpiece and general workpiece with continuous radial immersion milling are established respectively. Besides, the cumulative surface location error distribution is also studied and verified for the general workpiece. For the micro-milling scale, the dynamics at the micro-milling tool point is obtained by means of the receptance coupling substructure analysis method. The stability lobe diagram and surface location error distribution are analyzed under different restricted/free tool overhang lengths. The relationship between measurement results and burrs is further explained by cutting experiments, and the difference between the two milling scales is compared in the end.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:74786 |
Date | 04 May 2021 |
Creators | Wang, Dongqian |
Contributors | Ihlenfeldt, Steffen, Drossel, Welf-Guntram, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds