Return to search

GPGPU microbenchmarking for irregular application optimization

Irregular applications, such as unstructured mesh operations, do not easily map onto the typical GPU programming paradigms endorsed by GPU manufacturers, which mostly focus on maximizing concurrency for latency hiding. In this work, we show how alternative techniques focused on latency amortization can be used to control overall latency while requiring less concurrency. We used a custom-built microbenchmarking framework to test several GPU kernels and show how the GPU behaves under relevant workloads. We demonstrate that coalescing is not required for efficacious performance; an uncoalesced access pattern can achieve high bandwidth - even over 80% of the theoretical global memory bandwidth in certain circumstances. We also make other further observations on specific relevant behaviors of GPUs. We hope that this study opens the door for further investigation into techniques that can exploit latency amortization when latency hiding does not achieve sufficient performance.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6578
Date09 August 2022
CreatorsWinans-Pruitt, Dalton R.
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0021 seconds