O objetivo principal deste projeto foi desenvolver um modelo para a detecção de clusters de microcalcificações para o processamento de imagens mamográficas inteiras. O modelo foi subdividido em três etapas sendo na primeira realizado um pré-processamento para a melhoria da qualidade das imagens mamográficas no que se refere à remoção de ruídos e alargamento de contraste. Na segunda etapa do processamento, um conjunto de algoritmos foi aplicado visando-se a detecção propriamente dita de regiões de interesse nas imagens as quais possivelmente representariam os agrupamentos de microcalcificações. A terceira etapa destinou-se à classificação das regiões pré-selecionadas na etapa anterior para a determinação final dos achados verdadeiro-positivos (VP), buscando-se, assim, a diminuição da taxa de achados falso-positivos (FP). Em cada etapa do desenvolvimento do modelo, testes computacionais foram realizados a fim de auxiliarem na análise de resultados preliminares. Por fim, vários testes computacionais foram realizados em três conjuntos de imagens com composições distintas sendo o primeiro formado por regiões de interesse (RI) de phantoms, o segundo por RI de mamografias e o terceiro por imagens mamográficas inteiras. Propõe-se a integração das técnicas propostas ao sistema CAD em desenvolvimento pelo grupo de pesquisa do LAPIMO (Laboratório de Análise e Processamento de Imagens Médicas e Oftalmológicas) da Escola de Engenharia de São Carlos do presente instituto. / The main purpose of this project was to develop a new model for the detection of microcalcifications clusters for image processing in full mammograms. The model was subdivided in three stages being in the first accomplished a pre-processing for the improvement of the quality of the mammographic images through the removal of noise and contrast enlargement. In the second stage of the processing, a group of algorithms was applied being sought the detection properly said of regions of interest (ROI\'s) in the images which possibly would represent the microcalcifications clusters. The third stage was destined to the classification of the pre-selected areas in the previous stage for the final determination of the true-positive findies (TP), being looked for, like this, the decrease of the rate of false-positive (FP) ones. In each stage of the development of the model, computational tests was accomplished in order to analyze the preliminary results. Finally, several computational tests was accomplished in three groups of images with different compositions being the first formed by ROI\'s of phantoms, the second by ROI\'s of mammograms and the third for full mammograms. Is proposed too the integration of the techniques proposed to the CAD scheme in development for the group of research of LAPIMO (Laboratory of Analysis and Processing of Medical and Ophthalmology Images) of the University of São Paulo, São Carlos of the present institute.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06052009-095239 |
Date | 06 April 2009 |
Creators | Silva Júnior, Evanivaldo Castro |
Contributors | Schiabel, Homero |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds