Ces dernières années ont vu l'avènement de diodes électro-luminescentes bleues et blanches efficaces à base de nitrure de gallium (GaN). Cette technologie est en position de remplacer les ampoules conventionnelles dans un proche futur, permettant ainsi de considérables économies d'énergie. Toutefois, ce scénario exige que ces diodes soient entièrement optimisées, depuis la qualité du matériau jusqu'à la façon d'en extraire la lumière. Cette thèse étudie ce dernier aspect : la lumière émise dans un semiconducteur y est naturellement piégée, et une stratégie est nécessaire pour briser ce mécanisme de guidage. Plus précisément, nous examinons des méthodes permettant l'extraction déterministe de la lumière des diodes GaN en utilisant ses propriétés ondu! latoire (interférences, diffraction) afin d'obtenir des diodes efficaces dont les propriétés d'émission sont contrôlées. Les diodes a microcavités sont tout d'abord envisagées : celles-ci utilisent les interférences de la lumière dans la diode pour modifier les directions préférentielles d'émission et maximiser l'extraction directe. Toutefois, la fabrication de ces structures est complexe et n'offre qu'une efficacité théorique imparfaite. Par la suite, l'extraction de la lumière guidée par cristaux photoniques (CP) est étudiée. Un CP est une structure optique périodique formée dans la diode, qui altère les propriétés de propagation de la lumière. Ici, le CP agit comme un réseau de diffraction bidimensionnel qui redirige la lumière guidée vers l'extérieur. Ce principe est tout d'abord exploré par des expériences de photoluminescence sur des structures simples, qui révèlent la structure des modes guidés et suggèrent les propriétés que le CP devrait posséder. Ces propriétés peuvent être regroupées en deux catégories : structure planaire (choix du réseau cristallin et de la période du CP...) et structure verticale (qui mêle de façon plus complexe les propriétés du CP lui-même et celles de la couche épitaxiée). Diverses implémentations de diodes à cristaux photoniques sont par la suite proposées, fabriquées et caractérisées. Divers réseaux cristallins sont comparés, révélant les avantages de motifs complexes tels que le pavage d'Archimède. La plus grande partie de l'optimisation porte cependant sur la structure verticale, afin s'assurer une extraction efficace par le CP. Plusieurs solutions sont étudiées (ingénierie des couches épitaxiales pour modifier le diagramme d'émission de la lumière, structures minces pour augmenter son interaction avec le CP...) L'ensemble de ces implémentations est validé et guidé par la modélisation des propriétés du CP. Cette modélisation est un problème numérique complexe (solution des équations de Maxwell en trois dimensions). Plusieurs codes ont été écrits et employés durant la thèse - dont une méthode originale dite " hybride ". Celle-ci a permis d'expliquer quantitativement les résultats expérimentaux, et de suggérer les voies d'optimisation étudiées par la suite. Bien que loin d'être entièrement optimisées, les diodes obtenues à l'issue de ce travail présentent des résultats encourageants et laissent espérer une application industrielle.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00002956 |
Date | 03 July 2006 |
Creators | David, Aurélien |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds