Thesis advisor: Michelle Meyer / The primary bacterial targets for most antibiotics are well known. To survive the stress of an antibiotic a bacterium must decrease the antibiotic to target binding ratio to escape from harmful effects. This can occur through a number of different functions including down-regulation of the target, mutation of the binding site on the target, and decreasing the intake or increasing the efflux of the antibiotic. However, it is becoming more evident that an antibiotic stress response influences more than just the primary target, and that a wave of secondary responses can be triggered throughout the bacterium. As a result resistance mutations may arise in genes that are indirectly affected by the initial interaction between the antibiotic and target. These indirect responses have been found to be associated with metabolism, regulation, cell division, oxidative stress, and other critical pathways. One technique recently developed in our lab, called transposon insertion sequencing (Tn-seq), can be used to further understand the complexity of these indirect responses by profiling growth rates (fitness) of mutants at a genome-wide level. However, Tn-seq is normally performed with large libraries of pooled mutants and thus it remains unclear how this may influence fitness of some independent mutants that may be compensated by others in the population. Additionally, since the original method has only utilized planktonic culture, it is also not clear how higher order bacterial structures, such as biofilms or microcolonies, influence bacterial fitness. To better understand the dynamics of pooled versus individual mutant culture, as well as the effect of community structure in microcolony development on the influence of fitness, we adapted a droplet microfluidics-based technique to encapsulate and culture single mutants. We were able to successfully encapsulate at least 7 different species of bacterial pathogens, including Streptococcus pneumoniae, and culture them planktonically, or as microcolonies, in either monodisperse liquid or agarose droplets. These experiments, however, raised an important challenge: the DNA yield from one encapsulation experiment is insufficient to generate samples for sequencing by means of the traditional Tn-seq method. This led us to develop a novel Tn-seq DNA library preparation method, which is able to generate functional Tn-seq library molecules from picogram amounts of DNA. This method is not ideal yet because fitness data generated through the new method currently does not correlate well with data from traditional Tn-seq library preparation. However, we have identified one major culprit that should be easily solvable. We expect by modifying the binding site of the primer used for linear amplification of transposon ends that the new preparation method will be able recapitulate results from the traditional Illumina preparation method for Tn-seq. This will enable us to prepare robust Tn-seq samples from very small amounts of DNA in order to probe stress responses in single mutants as well as in microcolonies in a high-throughput manner. / Thesis (MS) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_106985 |
Date | January 2016 |
Creators | Thibault, Derek M. |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0). |
Page generated in 0.0026 seconds