Return to search

Fully Passive Wireless Acquisition of Neuropotentials

abstract: The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014

Identiferoai:union.ndltd.org:asu.edu/item:25945
Date January 2014
ContributorsSchwerdt, Helen N. (Author), Chae, Junseok (Advisor), Miranda, FĂ©lix A (Committee member), Phillips, Stephen (Committee member), Towe, Bruce C (Committee member), Balanis, Constantine A (Committee member), Frakes, David (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format162 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0018 seconds