Biological systems of bacteria were investigated at the single-cell and single-molecule level. Additionally, aspects of the techniques employed were studied. A unifying theme in each project is the reliance on optical imaging techniques coupled to microfluidic devices. Hypo-osmotic shock experiments with an Escherichia coli mechanosensitive channel deletion mutant were carried out at the single-cell level. E. coli MJF465 cells in which the three major mechanosensitive channel genes are deleted (∆mscL, ∆mscS, ∆mscK) show only 10% cell viability upon hypo-osmotic shock (from LB + 0.5 M NaCl into distilled water), compared to 90% viability of the wild-type strain. Bacterial cells were trapped with optical tweezers in microfluidic devices, enabling the first direct observation of single-cell behaviour upon hypo-osmotic shock. Phase-contrast microscopy revealed intra-population diversity in the cells response: Different features of lysis included cells bursting rapidly and leakage of ribosomes, DNA and protein from the cytoplasm. Fluorescence microscopy of hypo-osmotically-shocked GFP-expressing MJF465 cells showed either bursting of cells, which was a rare event, or fast leakage of GFP, indicating cell membrane ruptures. Data were analysed in terms of their kinetic behaviour and showed that lysis occurs on a timescale of milliseconds to seconds. The implications of these findings for the bacterial cell wall and cell membranes are discussed. Enzymes involved in homologous recombination and repair of double-stranded DNA (dsDNA) breaks are essential for maintaining genomic integrity in both eukaryotes and prokaryotes. RecBCD of E. coli and AddAB, found widely in bacteria, are involved in these processes, carrying out the same function. Both enzymes were studied kinetically with single-molecule total internal reflection fluorescence microscopy (TIRFM). Surface-tethered, hydrodynamically stretched lambda-DNA molecules, stained with YOYO-1, were imaged with TIRFM in a microfluidic flowcell. The RecBCD enzyme is a well characterised DNA helicase and was introduced to this system for method validation purposes. The AddAB enzyme of Bacteroides fragilis was then characterised as a helicase acting on lambda-DNA. It was found that AddAB helicase unwinds dsDNA with high processivity of on average 14,000 bp and up to 40,000 bp for individual enzyme complexes at an ATP-dependent rate ranging from 50-250 bp s−1 (for Mg2+-ATP concentrations larger or equal than 0.1 mM). This activity was detected by DNA binding dye (YOYO-1) displacement from the dsDNA and studied for different Mg2+-ATP concentrations, flow (shear) rates and different YOYO-1 staining ratios of DNA. Aspects of this last experimental setup were investigated. A kinetic analysis of intercalation of YOYO-1 into lambda-DNA is presented, occurring on a timescale of minutes. Different flow rates and staining ratios that influence the apparent (stretched) DNA molecule length were also examined. Several image analysis techniques were employed to enhance the data quality in images showing stretched lambda-DNA molecules. The Singular Value Decomposition was found to be the most effective technique which strongly reduces the noise in the obtained kymograph images.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563208 |
Date | January 2010 |
Creators | Reuter, Marcel |
Contributors | Dryden, David. : Poon, Wilson |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/6192 |
Page generated in 0.0018 seconds