Return to search

Nanoindentation relaxation study and micromechanics of Cement-Based Materials

Ce travail évalue le comportement mécanique des matériaux cimentaires à différentes échelles de distance. Premièrement, les propriétés mécaniques du béton produit avec un bioplastifiant à base de microorganismes efficaces (EM) sont etudiées par nanoindentation statistique, et comparées aux propriétés mécaniques du béton produit avec un superplastifiant ordinaire (SP). Il est trouvé que l’ajout de bioplastifiant à base de produit EM améliore la résistance des C–S–H en augmentant la cohésion et la friction des nanograins solides. L’analyse statistique des résultats d’indentation suggère que le bioplastifiant à base de produit EM inhibe la précipitation des C–S–H avec une plus grande fraction volumique solide. Deuxièmement, un modèle multi-échelles à base micromécanique est dérivé pour le comportement poroélastique de la pâte de ciment au jeune age. L’approche proposée permet d’obtenir les propriétés poroélastiques requises pour la modélisation du comportoment mécanique partiellement saturé des pâtes de ciment viellissantes. Il est montré que ce modèle prédit le seuil de percolation et le module de Young non drainé de façon conforme aux données expérimentales. Un metamodèle stochastique est construit sur la base du chaos polynomial pour propager l’incertitude des paramètres du modèle à travers plusieurs échelles de distance. Une analyse de sensibilité est conduite par post-traitement du metamodèle pour des pâtes de ciment avec ratios d’eau sur ciment entre 0.35 et 0.70. Il est trouvé que l’incertitude sous-jacente des propriétés poroélastiques équivalentes est principalement due à l’énergie d’activation des aluminates de calcium au jeune age et, plus tard, au module élastique des silicates de calcium hydratés de basse densité. / This work assesses the mechanical behavior of cement-based materials through different length scales. First, the mechanical properties of concrete produced with effective microorganisms (EM)-based bioplasticizer are investigated by means of statistical nanoindentation, and compared to the nanomechanical properties of concrete produced with ordinary superplasticizer (SP). It is found that the addition of EM-based bioplasticizer improves the strength of C–S–H by enhancing the cohesion and friction of solid nanograins. The statistical analysis of indentation results also suggests that EM-based bioplasticizer inhibits the precipitation of C–S–H of higher density. Second, a multiscale micromechanics-based model is derived for the poroelastic behavior of cement paste at early age. The proposed approach provides poroelastic properties required to model the behavior of partially saturated aging cement pastes. It is shown that the model predicts the percolation threshold and undrained elastic modulus in good agreement with experimental data. A stochastic metamodel is constructed using polynomial chaos expansions to propagate the uncertainty of the model parameters through different length scales. A sensitivity analysis is conducted by post-treatment of the meta-model for water-to-cement ratios between 0.35 and 0.70. It is found that the underlying uncertainty of the effective poroelastic proporties is mostly due to the apparent activation energy of calcium aluminate at early age and, later on, to the elastic modulus of low density calcium-silicate-hydrate.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27066
Date24 April 2018
CreatorsVenkovic, Nicolas
ContributorsSorelli, Luca
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xvi, 142 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds