Return to search

Sensing in 3D Printed Neural Microphysiological Systems

The research presented in this dissertation supports the overall goal of producing sensor functionalized neural microphysiological systems to enable deeper fundamental understandings of disease pathology and to provide drug screening and discovery platforms for improved clinical translation. Towards this goal, work addressing three broad objectives has been completed. The first objective was expanding the manufacturing process capabilities for hydrogels and tissues through augmentation of the 3D printing systems and developing novel modeling capabilities. The second objective was to expand the palette of available materials which exhibit the rheological properties required for 3D printing and the mechanical and biological properties required for neural tissue culture. The third objective was to develop sensing capabilities for both monitoring and control of the manufacturing process and to provide non-destructive assessment of microphysiological systems in real-time to quantify the dynamics of disease progression or response to treatment.

The first objective of process improvement was addressed both through modification of the 3D printing system itself and through modeling of process physics. A new manifold was implemented which enabled on-the-fly mixing of bioprinting inks (bioinks) to produce smooth concentration gradients or discrete changes in concentration. Modeling capabilities to understand the transport occurring during both the processing and post-processing windows were developed to provide insight into the relationship between the programmed concentration distribution and its temporal evolution and stability. Vacuum-based pick-and-place capabilities for integration of prefabricated components for sensing and stimulation into the printed hydrogel constructs were developed. Models of the stress profiles, which relate to cell viability, within the printing nozzle during extrusion were produced using parameters extracted from rheological characterization of bioinks.

The second objective was addressed through the development hydrogel bioinks which exhibited yield stresses without the use of rheological modifiers (fillers) to enable 3D printing of free-standing neural tissue constructs. A hybrid bioink was developed using the combination of a synthetic polaxamer with biomacromolecules present in native neural tissue. Functionalization of the biomacromolecules with catechol or methacrylate groups enabled two crosslinking mechanisms: chelation and UV exposure. Crosslinked gels exhibited moduli in the range of native neural tissue and enabled high viability culture of multiple neural cell types. The third objective was addressed through the characterization and implementation of physical and electronic sensors. The resonance of millimeter-scale dynamic-mode piezoelectric cantilevers submerged in polymer solutions was found to persist into the gel phase enabling viscoelastic sensing in hydrogels and monitoring of sol-gel transitions. Resonant frequency and quality factor of the cantilevers were related with the viscoelastic properties of hydrogels through both a first principles approach and empirical correlation.

Electrode functionalized hollow fibers were implemented as impedimetric sensors to monitor bioink quality during 3D printing. Impedance spectra were collected during extrusion of cell-laden bioinks and the magnitude and phased angle of the impedance response correlated with quality measures such as cell viability, cell type, and stemness which were validated with traditional off-line assays. / Doctor of Philosophy / The research presented in this dissertation supports the overall goal of producing sensor functionalized neural microphysiological systems to enable deeper fundamental understandings of disease pathology and to provide drug screening and discovery platforms for improved clinical translation. Microphysiological systems are miniaturized tissue constructs which strive to mimic the complex conditions present in-vivo within an in-vitro platform. By producing these microphysiological systems with sensing functionality, new insight into the mechanistic progression of diseases and the response to new treatment options can be realized. Towards this goal, work addressing three broad objectives has been completed. The first objective was expanding the manufacturing process capabilities for hydrogels and tissues through augmentation of the 3D printing systems and developing novel modeling capabilities. The second objective was to expand the palette of available materials which exhibit both the properties required for 3D printing and the mechanical and biological properties required for neural tissue culture. The third objective was to develop sensing capabilities for both monitoring and control of the manufacturing process and to provide non-destructive assessment of microphysiological systems in real-time to quantify the dynamics of disease progression or response to treatment. Through these efforts higher quality microphysiological systems may be produced benefitting future researchers, medical professionals, and patients.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106430
Date06 May 2020
CreatorsHaring, Alexander Philip
ContributorsChemistry, Johnson, Blake, Liu, Guoliang, Kong, Zhenyu, Dillard, David A., Jia, Xiaoting
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds