Return to search

A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of MicroRans in osteoclasts

Dysregulated microRNAs in osteoclasts could cause many skeletal diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNAs modulators targeting osteoclasts with minimal off-target effects. Bone resorption surfaces characterized by highly crystallized hydroxyapatite are dominantly occupied by osteoclasts. Considering that the eight repeating sequences of aspartate (D-Asp8) could preferably bind to highly crystallized hydroxyapatite, we developed a targeting system by conjugating D-Asp8 peptide with liposome for delivering microRNA modulators specifically to bone resorption surfaces and subsequently encapsulated antagomir-148a (a microRNA modulator suppressing the osteoclastogenic miR-148a), i.e. (D-Asp8)-liposome-antagomir-148a. Our results demonstrated that D-Asp8 could facilitate the enrichment of antagomir-148a and the subsequent down-regulation of miR-148a in osteoclasts in vivo, resulting in reduced bone resorption and attenuated deterioration of trabecular architecture in osteoporotic mice. Mechanistically, the osteoclast-targeting delivery depended on the interaction between bone resorption surfaces and D-Asp8. No detectable liver and kidney toxicity was found in mice after single/multiple dose(s) treatment of (D-Asp8)-liposome-antagomir-148a. These results indicated that (D-Asp8)-liposome as a promising osteoclast-targeting delivery system could facilitate clinical translation of microRNA modulators in treating those osteoclast-dysfunction-induced skeletal diseases.

Identiferoai:union.ndltd.org:hkbu.edu.hk/oai:repository.hkbu.edu.hk:etd_oa-1262
Date29 April 2016
CreatorsDang, Lei
PublisherHKBU Institutional Repository
Source SetsHong Kong Baptist University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Theses and Dissertations
RightsThe author retains all rights to this work. The author has signed an agreement granting HKBU a non-exclusive license to archive and distribute their thesis.

Page generated in 0.0017 seconds