Avec l'intégration de circuits intégrés de plus en plus denses, le besoin d'outils de caractérisation adaptés à ces échelles se fait ressentir. Identifier et analyser les problèmes de fiabilité survenant dans ces structures à des dimensions inférieures à 100 nm demande la mise au point d'instruments innovants. Ce travail de thèse a consisté dans un premier temps à développer un appareil à champs proches sensible aux propriétés mécaniques de surface, et dans un second temps à analyser les résultats expérimentaux en s'appuyant sur des approches analytiques et/ou numériques. Désigné sous le nom de microscope à force atomique à résonance de contact (CR-AFM), cet appareil est sensible à la rigidité effective de films minces sur substrat, ce qui lui permet de cartographier la rigidité mécanique de films minces. Nous avons mené un important travail de développement instrumental afin d'obtenir des résultats expérimentaux répétables et fiables, condition indispensable à une analyse quantitative. Puis nous avons utilisé le CR-AFM sur divers échantillons : empilements modèles (films de silice sur silicium, avec épaisseurs variables de silice), films de silice avec porosité variable, structures damascènes d'interconnexion cuivre,… Des images traduisant les variations d'élasticité de surface ont ainsi pu être construites. Pour quantifier ces variations, nous avons analysé nos résultats à l'aide de différents modèles (approches analytiques et numériques). Des simulations par éléments finis ont été réalisées pour étayer ces résultats. / The reduction of feature size in integrated circuits has raised an increasing need for characterization tools displaying small-scale resolution. Reliability issues taking place in these structures with dimensions below 100 nm require the development of innovative instruments. This thesis has first focused on the development of near field apparatus displaying sensitivity to surface mechanical properties. Afterwards analytical and numerical modelings have been developed to analyze the obtained experimental data. Known as contact resonance atomic force microscope (CR-AFM), this apparatus is sensitive to the effective stiffness of thin film on substrate, allowing the mapping of the mechanical stiffness. A significant work on the apparatus setting-up and procedure has been done to obtain repeatable and reliable experimental data, which is a prerequisite for quantitative analysis. Then CR-AFM experiments have been done on various samples: model stacks (silica thin films on silicon with varying silica thickness), silica films with tuned porosity, Damascene copper interconnect structures,… The mapping of elastic stiffness of such samples has been built-up. In order to quantify these contrasts, our experimental results have been analyzed through different models (analytical and numerical). Finite element simulations were also performed to support these results.
Identifer | oai:union.ndltd.org:theses.fr/2011GRENI030 |
Date | 20 May 2011 |
Creators | Mege, Fabrice |
Contributors | Grenoble, Volpi, Fabien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds