In the present study both fusion based - laser powder bed fusion (LPBF), and solid state - additive friction stir deposition (AFSD) additive manufacturing processes were employed for the manufacturing of a metastable high entropy alloy (HEA), Fe40Mn20Co20Cr15Si5 (CS-HEA). A processing window was developed for the LPBF and AFSD processings of CS-HEA. In case of LPBF, formation of solidification related defects such as lack of fusion pores (for energy density ≤ 31.24 J/mm3) and keyhole pores (for energy density ≥ 75 J/mm3) were observed. Variation in processing conditions affected the microstructural evolution of the metastable CS-HEA; correlation between processing conditions and microstructure of the alloy is developed in the current study. The tendency to transform and twin near stress concentration sites provided excellent tensile and fatigue properties of the material despite the presence of defects in the material. Moreover, solid state nature of AFSD process avoids formation of solidification related defects. Defect free builds of CS-HEA using AFSD resulted in higher work hardening in the material. In summary, the multi-processing techniques used for CS-HEA in the present study showcase the capability of the AM process in tailoring the microstructure, i.e., grain size and phase fractions, both of which are extremely critical for the mechanical property enhancement of the alloy.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc1987173 |
Date | 08 1900 |
Creators | Agrawal, Priyanshi |
Contributors | Mishra, Rajiv S, Banerjee, Rajarshi, Mukherjee, Sundeep, Young, Marcus, Siller, Hector |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Agrawal, Priyanshi, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0147 seconds