Les matériaux métalliques polycristallins sont des agrégats de grains plus ou moins favorablement orientés, par rapport à l'axe de sollicitation, pour le glissement plastique. Lors d'une sollicitation mécanique, cette diversité d'orientations cristallines conduit à une hétérogénéité de la déformation à l'échelle de la microstructure : des déformations plastiques locales peuvent apparaître dans certains grains alors que l'échantillon est macroscopiquement sous chargement élastique. Par ailleurs, cette plasticité locale s'accompagne de l'émergence de marques de glissement en surface du matériau et elle induit une dissipation d'énergie liée aux irréversibilités mécaniques. La description fidèle de ces phénomènes mécaniques et énergétiques, à l'échelle d'apparition de la plasticité et de l'endommagement, ouvre alors la perspective d'identifier des modèles mécaniquement admissibles et énergétiquement fondés.<br /><br />L'objectif de ces travaux est donc de développer les moyens expérimentaux nécessaires à la réalisation de telles analyses mécaniques et énergétiques à l'échelle microstructurale. Pour accéder simultanément aux informations cinématiques et thermiques à l'échelle la plus fine possible actuellement, celle des grains d'un polycristal, des mesures de champs de température par thermographie infrarouge et de champs de déformation par corrélation d'images numériques sont donc mises en œuvre au sein d'un dispositif original de couplage des deux techniques. Ce dispositif permet alors une étude simultanée des champs de température et de déformation d'un acier inoxydable austénitique 316L sous sollicitations uniaxiales monotones et cycliques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00347987 |
Date | 24 November 2008 |
Creators | Bodelot, Laurence |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds