Return to search

Dynamics of Microtubule Networks with Antiparallel Crosslinkers

Microtubules are the most rigid element of the cytoskeleton. They are responsible for the structure of cells and make up the tracks for intracellular cargo transport. Interactions between microtubules, motor proteins, and microtubule-associated proteins drive important mechanisms in the cell, such as cell division, cell motility, cell homeostasis, and cell signaling. I seek to understand how such complex, energy-consuming non-equilibrium biological networks self-organize by studying in vitro microtubules bundled by microtubule-associated protein 65 (MAP65), in kinesin-1 gliding assays. I found that large networks can break into smaller, cell-like networks that can mimic types of cell motility. Dynamics of these networks change with varying concentrations of MAP65 and microtubules.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1426
Date13 July 2016
CreatorsStanhope, Kasimira T
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0019 seconds