Systems populating the Ubiquitous Computing environment are characterized by an often extreme level of heterogeneity at different layers which prevents their seamless interoperability. In this environment, heterogeneous protocols would cooperate to reach some common goal even though they meet dynamically and do not have a priori knowledge of each other. Although numerous efforts have been done in the literature, the automated and run-time interoperability is still an open challenge for such environment. Therefore, this thesis focuses on overcoming the interoperability problem between heterogeneous protocols in the Ubiquitous Computing. In particular, we aim at providing a means to drop the interoperability barriers by automatically eliciting a way for the protocols to interact. The solution we propose is the automated synthesis of emerging mediating connectors (also called mediators or connectors). Specifically, we concentrate our efforts to: (i) devising AMAzING, a process to synthesize mediators, (ii) characterizing protocol mismatches and related mediator patterns, and (iii) designing MediatorS, a theory of mediating connectors. The theory, and the process, are put in practice by applying them to a real world application, and have been adopted by the European Research Project CONNECT.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00660816 |
Date | 18 April 2011 |
Creators | Spalazzese, Romina |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.002 seconds