Return to search

Impacts of midpoint FACTS controllers on the coordiantion between generator phase backup protection and generator capability limits

The thesis reports the results of comprehensive studies carried out to explore the impact of midpoint FACTS Controllers (STATCOM and SVC) on the generator distance phase backup protection in order to identify important issues that protection engineers need to consider when designing and setting a generator protection system. In addition, practical, feasible and simple solutions to mitigate the adverse impact of midpoint FACTS Controllers on the generator distance phase backup protection are explored.
The results of these studies show that midpoint FACTS Controllers have an adverse effect on the generator distance phase backup protection. This adverse effect, which can be in the form of underreach, overreach or a time delay, varies according to the fault type, fault location and generator loading. Moreover, it has been found that the adverse effect of the midpoint FACTS Controllers extends to affect the coordination between the generator distance phase backup protection and the generator steady-state overexcited capability limit.
The Support Vector Machines classification technique is proposed as a replacement for the existing generator distance phase backup protection relay in order to alleviate potential problems. It has been demonstrated that this technique is a very promising solution, as it is fast, reliable and has a high performance efficiency. This will result in enhancing the coordination between the generator phase backup protection and the generator steady-state overexcited capability limit in the presence of midpoint FACTS Controllers.
The thesis also presents the results of investigations carried out to explore the impact of the generator distance phase backup protection relay on the generator overexcitation thermal capability. The results of these investigations reveal that with the relay settings according to the current standards, the generator is over-protected and the generator distance phase backup protection relay restricts the generator overexcitation thermal capability during system disturbances. This restriction does not allow the supply of the maximum reactive power of the generating unit during such events. The restriction on the generator overexcitation thermal capability caused by the generator distance phase backup protection relay highlights the necessity to revise the relay settings. The proposed solution in this thesis is to reduce the generator distance phase backup protection relay reach in order to provide secure performance during system disturbances.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-07102011-162129
Date15 July 2011
CreatorsElsamahy, Mohamed Salah Kamel
ContributorsFaried, Sherif O., Nguyen, Ha, Chowdhury, Nurul, El-Serafi, Ahmed M., Boulfiza, Mohamed, Liao, Yuan
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-07102011-162129/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds