Return to search

Organ-on-a-Disc: A Scalable Platform Technology for the Generation and Cultivation of Microphysiological Tissues

Organ-on-Chip (OoC) systems culture human tissues in a controllable environment under microfluidic perfusion and enable a precise recapitulation of human physiology. Although recent studies demonstrate the potential of OoCs as alternative to traditional cell assays and animal models in drug development as well as personalized medicine, unmet challenges in device fabrication, parallelization and operation hinder their widespread application. In order to overcome these obstacles, this thesis focuses on the development of the Organ-on-a-Disc technology for the scalable generation and cultivation of microphysiological tissues. Organ-Discs are fabricated using precise, rapid and scalable microfabrication techniques. They enable the pump- and tubing-free perfusion as well as the parallelized generation and culture of tailorable and functional microtissues using rotation-based operations. The Organ-Disc setup is suitable for versatile tissue readouts, treatments and even whole blood perfusion with minimal handling and equipment requirements. Overall, the Organ-Disc creates a scalable and userfriendly platform technology for microphysiological tissue models and paves the way for their transition towards high-throughput systems.:Abbreviations
Symbols
1 Introduction
2 Background
2.1 Fluid Dynamics
2.1.1 Flow Equations
2.1.2 Hydraulic Resistance
2.1.3 Wall Shear Stress
2.1.4 Centrifugal Microfluidics
2.2 Microfluidic Chip Fabrication
2.2.1 Chip Materials
2.2.2 Microstructuring
2.2.3 Bonding
3 State of the Art
3.1 Cell Culture Systems
3.2 3D Tissue Generation in Microfluidic Systems
3.3 Organ-on-Chip
3.4 Scale-up of Organ-on-Chip Systems
3.4.1 Scalable Fabrication Technologies
3.4.2 Parallelization Approaches
3.4.3 Integrated Fluid Actuation
3.5 Centrifugal Microfluidics
4 Objectives
5 Materials and Methods
5.1 Organ-Disc Fabrication
5.1.1 Materials
5.1.2 2D Structuring
5.1.3 Hot Embossing
Stamp Fabrication
TPE Hot Embossing
5.1.4 Bonding
Solvent Vapor Bonding
Thermal Fusion Bonding
TPE Bonding
5.1.5 Characterization Methods
Structure Sizes
Bonding Strength
Optical Properties
5.2 Organ-Disc Spinner
5.2.1 Centrifugal Loading Setup
5.2.2 Centrifugal Perfusion Setup
5.2.3 Peristaltic Pumping Setup
5.3 Organ-Disc Perfusion
5.3.1 Centrifugal Perfusion
5.3.2 Peristaltic Perfusion
5.4 Preparatory Cell Culture
5.5 Organ-Disc Cell Loading
5.5.1 Centrifugal Cell Loading
5.5.2 Endothelial-lining
5.6 Organ-Disc Cell Culture
5.6.1 Staining and Imaging
Live Cell Labeling
Live/Dead Staining
CD106 Staining
CD41 Staining
Fixation, Permeabilization and Blocking
Actin/Nuclei Staining
CD31/Nuclei Staining
5.6.2 Media Analysis
5.6.3 Endothelial Cell Activation
5.6.4 Whole Blood Perfusion
5.7 Data Presentation and Statistics
6 Concept and Design
6.1 Organ-Disc Technology
6.2 Organ-Disc Design
6.3 Centrifugal Cell Loading
6.4 Endothelial Cell Lining
6.5 Centrifugal Perfusion
6.6 Peristaltic Perfusion
7 Building Blocks
7.1 Microfabrication Technology
7.1.1 Structuring
2D Structuring
Hot Embossing
7.1.2 Bonding
Solvent Vapor Bonding
Thermal Fusion Bonding
TPE Bonding
7.2 Organ-Disc Spinner
8 Perfusion
8.1 Centrifugal Pumping
8.2 Peristaltic Pumping
9 Tissue Generation and Culture
9.1 3D Tissue Generation
9.2 Stratified Tissue Construction
9.3 Generation of Endothelial-lined Channels
9.4 Perfusion of Endothelial-lined Channels
9.4.1 Media Monitoring
Evaporation
Cell Metabolism
9.4.2 Inflammatory Cell Stimulation
9.4.3 Whole Blood Perfusion
10 Discussion
10.1 Organ-Disc Technology
10.2 Scalable, Precise and Robust Organ-Disc Fabrication
10.2.1 Fabrication of Thermoplastic Organ-Discs
10.2.2 Fabrication of TPE Modules
10.2.3 Integration of TPE Modules to Organ-Discs
10.3 Tunable, Pump- and Tubing-free Perfusion
10.4 On-Disc Tissue Culture
10.4.1 3D Tissues
10.4.2 Blood Vessel-like Structures
10.4.3 Tissue Characterization and Treatment
10.5 On-Disc Blood Perfusion
11 Summary and Conclusion
12 References
13 Appendix / In Organ-on-Chip (OoC)-Systemen werden menschliche Gewebe mittels mikrofluidischer Versorgung in einer kontrollierten Umgebung kultiviert und so die Physiologie des Menschen nachgebildet. Obwohl aktuelle Studien zeigen, dass dieser Ansatz Alternativen zu herkömmlichen Zellbasierten Tests und Tiermodellen in der Arzneimittelentwicklung und der personalisierten Medizin bietet, stehen einer breiteren Anwendung Hürden im Bereich der Herstellung, Parallelisierung und Handhabung im Weg. Deshalb ist das Ziel dieser Arbeit die Entwicklung der Organ-on-a-Disc-Technologie, die eine skalierbare Erzeugung und Kultur von mikrophysiologischen Geweben ermöglicht. Für die Herstellung von der Organ-Disc kommen präzise, schnelle und skalierbare Mikrofabrikationsmethoden zum Einsatz. Die Organ-Disc schafft die Basis für die parallelisierte Erzeugung und Kultur von maßgeschneiderten und funktionellen Mikrogeweben, sowie deren Versorgung durch rotationsbasierte Prozesse und ohne zur Hilfenahme von Pumpen oder Schläuchen. Die Organ-Disc eignet sich für unterschiedliche Charakterisierungsmethoden sowie der Gewebestimulation und sogar der
Vollblutperfusion mit minimalem Aufwand und Equipment. Insgesamt stellt die Organ-Disc eine skalierbare und benutzerfreundliche Plattformtechnologie für mikrophysiologische Modelle dar und bereitet den Weg für Hochdurchsatzanwendungen.:Abbreviations
Symbols
1 Introduction
2 Background
2.1 Fluid Dynamics
2.1.1 Flow Equations
2.1.2 Hydraulic Resistance
2.1.3 Wall Shear Stress
2.1.4 Centrifugal Microfluidics
2.2 Microfluidic Chip Fabrication
2.2.1 Chip Materials
2.2.2 Microstructuring
2.2.3 Bonding
3 State of the Art
3.1 Cell Culture Systems
3.2 3D Tissue Generation in Microfluidic Systems
3.3 Organ-on-Chip
3.4 Scale-up of Organ-on-Chip Systems
3.4.1 Scalable Fabrication Technologies
3.4.2 Parallelization Approaches
3.4.3 Integrated Fluid Actuation
3.5 Centrifugal Microfluidics
4 Objectives
5 Materials and Methods
5.1 Organ-Disc Fabrication
5.1.1 Materials
5.1.2 2D Structuring
5.1.3 Hot Embossing
Stamp Fabrication
TPE Hot Embossing
5.1.4 Bonding
Solvent Vapor Bonding
Thermal Fusion Bonding
TPE Bonding
5.1.5 Characterization Methods
Structure Sizes
Bonding Strength
Optical Properties
5.2 Organ-Disc Spinner
5.2.1 Centrifugal Loading Setup
5.2.2 Centrifugal Perfusion Setup
5.2.3 Peristaltic Pumping Setup
5.3 Organ-Disc Perfusion
5.3.1 Centrifugal Perfusion
5.3.2 Peristaltic Perfusion
5.4 Preparatory Cell Culture
5.5 Organ-Disc Cell Loading
5.5.1 Centrifugal Cell Loading
5.5.2 Endothelial-lining
5.6 Organ-Disc Cell Culture
5.6.1 Staining and Imaging
Live Cell Labeling
Live/Dead Staining
CD106 Staining
CD41 Staining
Fixation, Permeabilization and Blocking
Actin/Nuclei Staining
CD31/Nuclei Staining
5.6.2 Media Analysis
5.6.3 Endothelial Cell Activation
5.6.4 Whole Blood Perfusion
5.7 Data Presentation and Statistics
6 Concept and Design
6.1 Organ-Disc Technology
6.2 Organ-Disc Design
6.3 Centrifugal Cell Loading
6.4 Endothelial Cell Lining
6.5 Centrifugal Perfusion
6.6 Peristaltic Perfusion
7 Building Blocks
7.1 Microfabrication Technology
7.1.1 Structuring
2D Structuring
Hot Embossing
7.1.2 Bonding
Solvent Vapor Bonding
Thermal Fusion Bonding
TPE Bonding
7.2 Organ-Disc Spinner
8 Perfusion
8.1 Centrifugal Pumping
8.2 Peristaltic Pumping
9 Tissue Generation and Culture
9.1 3D Tissue Generation
9.2 Stratified Tissue Construction
9.3 Generation of Endothelial-lined Channels
9.4 Perfusion of Endothelial-lined Channels
9.4.1 Media Monitoring
Evaporation
Cell Metabolism
9.4.2 Inflammatory Cell Stimulation
9.4.3 Whole Blood Perfusion
10 Discussion
10.1 Organ-Disc Technology
10.2 Scalable, Precise and Robust Organ-Disc Fabrication
10.2.1 Fabrication of Thermoplastic Organ-Discs
10.2.2 Fabrication of TPE Modules
10.2.3 Integration of TPE Modules to Organ-Discs
10.3 Tunable, Pump- and Tubing-free Perfusion
10.4 On-Disc Tissue Culture
10.4.1 3D Tissues
10.4.2 Blood Vessel-like Structures
10.4.3 Tissue Characterization and Treatment
10.5 On-Disc Blood Perfusion
11 Summary and Conclusion
12 References
13 Appendix

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:81037
Date04 October 2022
CreatorsSchneider, Stefan
ContributorsRichter, Andreas, van den Berg, Albert, Loskill, Peter, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1039/D1LC00494H, 10.3390/mi12050575, 10.1039/D1LC00188D, 10.1063/5.0019766, 10.1038/s41598-020-63710-4, 10.1016/j.cobme.2018.02.004

Page generated in 0.0028 seconds