This diploma thesis deals with cavitation flow in the microscale, which remains an area with a lack of sufficient description of this phenomenon. At the same time, microfluidics is a field experiencing a dramatic rise in numerous biochemical applications, which underlines the relevance of researches of this type. In theoretical part of the thesis, cavitation was described in detail. In the practical part, a microfluidic device with a cavitation orifice was designed and manufactured. The ANSYS program was used for this design. An experiment was performed with the designed microchip, the aim of which was to observe a cavitating flow on the orifice. This measurement took place at the microfluidic laboratory at Victor Kaplan Department of Fluid Engineering. Due to the failure of the experiment, a CFD model of two-phase cavitation flow was built. The conclusions of the thesis were compiled from the findings of measurement and the results of modeling.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:444292 |
Date | January 2021 |
Creators | Bohunský, Tomáš |
Contributors | Burda, Radim, Rudolf, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds