Return to search

Effects of feeding term infants low energy low protein formula supplemented with bovine milk fat globule membranes

Background Observational studies have shown that early nutrition influences short- and long-term health of infants. Formula-fed infants have higher protein and energy intakes and lower intakes of several biologically active components present in human milk. Some of these are present in the milk fat globule membrane (MFGM). The aim of the present study was to examine the effects of feeding term infants an experimental low energy low protein formula supplemented with bovine milk fat globule membranes. Our hypothesis was that infants fed experimental formula (EF), compared to infants fed standard formula (SF), would have outcomes more similar to a breast-fed reference (BFR) group. Methods In a double-blinded randomized controlled trial, 160 exclusively formula-fed, healthy, term infants were randomized to receive EF or SF from <2 to 6 months of age. A BFR group consisted of 80 breast-fed infants. Measurements were made at baseline, 4, 6 and 12 months of age. The EF had lower energy (60 vs. 66 kcal/100 mL) and protein (1.20 vs. 1.27 g/100 mL) concentrations, and was supplemented with a bovine MFGM concentrate. Results At 12 months of age, the EF group performed better than the SF group in the cognitive domain of Bayley Scales of Infant Development, 3rd Ed. During the intervention, the EF group had a lower incidence of acute otitis media than the SF group, less use of antipyretics and the EF and SF groups differed in concentrations of s-IgG against pneumococci. The formula-fed infants regulated their intakes by increasing meal volumes. Thus, there were no differences between the EF and SF groups in energy or protein intakes, blood urea nitrogen, insulin or growth including body fat percent until 12 months of age. Pressure-to-eat score at 12 months of age was reported lower by parents of formula-fed infants than by parents of breast-fed infants, indicating a low level of parental control of feeding in the formula-fed groups. Neither high pressure-to-eat score nor high restrictive score was associated with formula feeding. During the intervention, the EF group gradually reached higher serum cholesterol concentrations than the SF group, and closer to the BFR group. At 4 months of age, there was no significant difference in the prevalence of lactobacilli in saliva between the EF and SF groups. Conclusions Supplementation of infant formula with a bovine MFGM fraction enhanced both cognitive and immunological development in formula-fed infants. Further, the intervention narrowed the gap in serum cholesterol concentrations between formula-fed and breast-fed infants. The lower energy and protein concentrations of the EF were totally compensated for by a high level of self-regulation of intake which might, at least partly, be explained by a low level of parental control of feeding in the study population. The findings are of importance for further development of infant formulas and may contribute to improved short- and long-term health outcomes for formula-fed infants.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-88192
Date January 2014
CreatorsTimby, Niklas
PublisherUmeå universitet, Pediatrik, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUmeå University medical dissertations, 0346-6612 ; 1644

Page generated in 0.0025 seconds