Improvements to isogeometric blended shells are introduced which blend traditional Reissner-Mindlin shells, and Kirchhoff-Love shells, with an exact interpolation of the shell director increment. A gradient extraction operator is introduced which allows derivatives of basis functions to be exactly expressed as a linear combination of the basis functions themselves. Several benchmarks are investigated and the new blended shell is compared with different shell elements in ABAQUS and NASTRAN. In addition, the effect of different quadrature schemes is included in the comparisons. The new isogeometric blended shell performs comparably in some benchmarks, and even outperforms commercial shell finite elements in some benchmarks. Future improvements to the formulation are discussed.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7565 |
Date | 01 October 2017 |
Creators | Willoughby, David Scott |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds