The mining industry is constantly under pressure to improve productivity, effciency and safety. Although an increased use of automation technology has the potential of con- tributing to improvements in all three factors mines have been relatively slow to make use of automation technology. Automation in the underground mining environment is a challenging prospect for a number of reasons not least of which being the diffculties and associated costs of installing infrastructure in this hazardous environment. The work described in this dissertation focuses on the modelling of a Load-Haul-Dump or LHD vehicle for the purpose of autonomous navigation and control. Considerable progress has been made in automating underground mining vehicles in recent years, and successful test installations have been made. There are still however a number of shortcomings in the existing autonomous underground mine vehicle navigation systems. This dissertation attempts to address some of these problems through the development of a more accurate vehicle model for an LHD vehicle incorporating some vehicle and tyre dynamics thereby potentially reducing the number of sensors and the amount of installed infrastructure necessary to implement the vehicle navigation system. Simulation results are provided for different vehicle modelling techniques and the results are compared and discussed in terms of their suitability for physical implementation in an underground mine. / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / MEng / unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/27600 |
Date | 28 August 2007 |
Creators | Dragt, Bruce James |
Contributors | Prof I K Craig, bruced@ist.co.za |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Dissertation |
Rights | © University of Pretor |
Page generated in 0.0028 seconds