The desire to counter multipath effects and improve communication links between mobile wireless systems in dense environment has led to much research in implementing antenna diversity. Space diversity, utilizing two or more antennas separated several wavelengths from one another, is one of the most popular method to achieve this operation. Meanwhile, polarization diversity, utilizing two orthogonal polarizations, has become more attractive in reducing cost and size of antenna systems. Polarization diversity is achieved using two orthogonal feeds to excite the two orthogonal polarization planes of the antenna. The challenge associated with designing dual polarized antennas is the need to reduce isolation between the feed and cross polarization level while maintaining a high efficiency. While a number of studies are successful in realizing polarization diversity, their antenna structure typically present more complex structures involving multiple layers. This thesis presents a novel method to implement polarization diversity on a miniature antenna using a simple planar structure. The antenna structure uses two crossed slots further miniaturized using a method derived from a recent study on miniaturized spiral slot antenna. At an operating frequency of ~ 1 GHz, the antenna is capable of achieving efficiency greater than 90% with a size as small as 0.08 .? x 0.08? The dual polarization operation is achieved by exciting the magnetic currents of the crossed slots with two orthogonal coplanar waveguide feeds. Simulation results of the proposed antenna yield an isolation > 15 dB with cross polarization levels > 10 dB. Theantenna structure was designed using CST Microwave Studio and the simulations were performed using IE3D simulation software.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-1884 |
Date | 01 January 2009 |
Creators | Villegas, Rhonessa I. |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Source | HIM 1990-2015 |
Page generated in 0.0021 seconds