Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:36:31Z
No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:39:40Z (GMT) No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-25T14:39:40Z (GMT). No. of bitstreams: 2
Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we develop arguments on the critical point theory for locally Lipschitz functionals
on Orlicz-Sobolev spaces, along with convexity, minimization and compactness
techniques to investigate existence of solution of the multivalued equation
−∆Φu ∈ ∂ j(.,u) +λh in Ω,
where Ω ⊂ RN is a bounded domain with boundary smooth ∂Ω, Φ : R → [0,∞) is
a suitable N-function, ∆Φ is the corresponding Φ−Laplacian, λ > 0 is a parameter,
h : Ω → R is a measurable and ∂ j(.,u) is a Clarke’s Generalized Gradient of a function
u %→ j(x,u), a.e. x ∈ Ω, associated with critical growth. Regularity of the solutions is
investigated, as well. / Neste trabalho desenvolvemos argumentos sobre a teoria de pontos críticos para funcionais
Localmente Lipschitz em Espaços de Orlicz-Sobolev, juntamente com técnicas de
convexidade, minimização e compacidade para investigar a existencia de solução da
equação multivalente
−∆Φu ∈ ∂ j(.,u) +λh em Ω,
onde Ω ⊂ RN é um domínio limitado com fronteira ∂Ω regular, Φ : R → [0,∞) é uma
N-função apropriada, ∆Φ é o correspondente Φ−Laplaciano, λ > 0 é um parâmetro,
h : Ω → R é uma função mensurável e ∂ j(.,u) é o gradiente generalizado de Clarke da
função u %→ j(x,u), q.t.p. x ∈ Ω, associada com o crescimento crítico. A regularidade de
solução também será investigada.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3686 |
Date | 27 September 2013 |
Creators | Carvalho, Marcos Leandro Mendes |
Contributors | Gonçalves, José Valdo Abreu, Gonçalves, José Valdo Abreu, Mota, Jesus Carlos da, Silca, EdCarlos Domingos da, Alves, Claudianor Oliveira, Santos, Carlos Alberto Pereira dos |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, 600, -4268777512335152015, -7090823417984401694, 2075167498588264571 |
Page generated in 0.0191 seconds