Tunnelling machines are utilized for many types of excavations in mining and civil engineering applications. To date, the control of tunnelling machines has not been automated to any significant extent. This thesis investigates the dynamic control of a vertical turret, boom-type tunnelling machine. Models of the actuators, kinematics, rigid body dynamics, and cutter-rock interaction are formulated. These models are validated through computer simulation. Controllers are then designed for the actuators using the pole-placement technique, in both continuous and discrete time. The controllers are tested in a variety of operational modes, using the computer simulation of the machine model. Results show that good tracking and disturbance rejection is achieved.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.61061 |
Date | January 1992 |
Creators | Wu, Hongjin |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mining and Metallurgical Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001291251, proquestno: AAIMM74646, Theses scanned by UMI/ProQuest. |
Page generated in 0.0022 seconds