Return to search

Homeostasis of metastable proteins in Alzheimer's disease

Alzheimer’s disease (AD) is the most common cause of dementia, affecting almost 40 million people worldwide, and it is predicted that this number will rise to nearly 150 million by 2050. It results not only in enormous distress for affected individuals and carers but also a substantial economic burden on society. Although more than 100 years have passed since its discovery, no cure for AD exists, despite enormous efforts in basic and clinical research over the past few decades, due to limited understanding of its underlying mechanisms. Neurodegenerative disorders, of which AD is an example, are highly complex disorders characterized by extensive neuronal dysfunction associated with the misfolding and aggregation of a specific set of proteins, including amyloid plaques and neurofibrillary tangles in AD. One promising avenue for progress in the field is to improve our understanding of the mechanisms by which cellular dysfunction arises from the initial protein aggregation events. The studies described in the thesis are based on the recent finding that a large number of proteins are inherently supersaturated, being expressed at concentrations higher than their solubilities, and constituting a metastable subproteome potentially susceptible to aggregation. These studies illustrate the dependence of aggregation prone metastable proteins on the cellular degradation machineries. They also study the role of metastable proteins and their homeostasis complement in the vulnerability of various body and brain tissues to protein aggregation diseases. Using extensive sequencing data and network based systems biology approaches, they elucidate how fundamental physicochemical properties of an individual or group of proteins relate to their biological function or dysfunction.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:744273
Date January 2017
CreatorsKundra, Rishika
ContributorsDobson, Christopher Martin ; Vendruscolo, Michele
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/268485

Page generated in 0.002 seconds