A técnica de agrupamento de dados é amplamente utilizada em análise exploratória, a qual é frequentemente necessária em diversas áreas de pesquisa tais como medicina, biologia e estatística, para avaliar potenciais hipóteses a serem utilizadas em estudos subseqüentes. Em bases de dados reais, a ocorrência de dados incompletos, nos quais os valores de um ou mais atributos do dado são desconhecidos, é bastante comum. Este trabalho apresenta um método capaz de identificar o número de grupos presentes em bases de dados incompletas, utilizando a combinação das técnicas de agrupamentos nebulosos e reamostragem bootstrap. A qualidade da classificação é baseada em medidas de comparação tradicionais como F1, Classificação Cruzada, Hubert e outras. Os estudos foram feitos em oito bases de dados. As quatro primeiras são bases de dados artificiais, a quinta e a sexta são a wine e íris. A sétima e oitava bases são formadas por uma coleção brasileira de 119 estirpes de Bradyrhizobium. Para avaliar toda informação sem introduzir estimativas, fez-se a modificação do algoritmo Fuzzy C-Means (FCM) utilizando-se um vetor de índices de atributos, os quais indicam onde o valor de um atributo é observado ou não, modificando-se ento, os cálculos do centro e distância ao centro. As simulações foram feitas de 2 até 8 grupos utilizando-se 100 sub-amostras. Os percentuais de valores faltando utilizados foram 2%, 5%, 10%, 20% e 30%. Os resultados deste trabalho demonstraram que nosso método é capaz de identificar participações relevantes, até em presença de altos índices de dados incompletos, sem a necessidade de se fazer nenhuma suposição sobre a base de dados. As medidas Hubert e índice randômico ajustado encontraram os melhores resultados experimentais. / Clustering in exploratory data analysis is often necessary in several areas of the survey such as medicine, biology and statistics, to evaluate potential hypotheses for subsequent studies. In real datasets the occurrence of incompleteness, where the values of some of the attributes are unknown, is very common. This work presents a method capable to identifying the number of clusters present in incomplete datasets, using a combination of the fuzzy clustering and resampling (bootstrapping). The quality of classification is based on the traditional measures, like F1, Cross-Classification, Hubert and others. The studies were made on eigth datasets. The first four are artificial datasets, the fifth and sixth are the wine and iris datasets. The seventh and eighth databases are composed of the brazilian collection of 119 Bradyrhizobium strains. To evaluate all information without introducing estimates, a modification of the Fuzzy C-Means (FCM) algorithm was developed using an index vector of attributes, which indicates whether an attribute value is observed or not, and changing the center and distance calculations. The simulations were made from 2 to 8 clusters using 100 sub-samples. The percentages of the missing values used were 2%, 5%, 10%, 20% and 30%. Even lacking data and with no special requirements of the database, the results of this work demonstrate that the proposed method is capable to identifying relevant partitions. The best experimental results were found using Hubert and corrected randomness measures.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04032009-150315 |
Date | 18 July 2008 |
Creators | Milagre, Selma Terezinha |
Contributors | Maciel, Carlos Dias |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds