Return to search

Bakteriální proteiny v biogenezi mitochondrií jednobuněčných eukaryot. / Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.

in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:409225
Date January 2019
CreatorsPetrů, Markéta
ContributorsDoležal, Pavel, Embley, Martin, Hashimi, Hassan
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0114 seconds