Return to search

Jk-integral Formulation And Implementation For Thermally Loaded Orthotropic Functionally Graded Materials

The main aim of this study is to utilize a Jk-integral based computational method in order to calculate crack tip parameters for orthotropic functionally graded materials (FGMs). The crack is subjected to mixed mode thermal loading. Mixed mode thermal fracture analysis requires the calculation of mode-I and mode-II stress intensity factors (KI ,KII ). In addition to stress intensity factors, energy release rate and T-stress are calculated by means of Jk-integral. Jk-integral is defined as a line integral over a vanishingly small curve. Since it is difficult to deal with a line integral on a vanishing curve , Jk-integral is converted to a domain independent form containing area and line integrals by the help of plane thermoelasticity constitutive relations. Steady-state temperature distribution profiles in FGMs and the components of the Jk-integral are computed by means of the finite element method.
In both thermal and structural analyses, finite element models that possess graded isoparametric elements are created in the general purpose finite element analysis software ANSYS. In the formulation of Jk-integral, all required engineering material properties are assumed to possess continuous spatial variations through the functionally graded medium. The numerical results are compared to the results obtained from Displacement Correlation Technique (DCT). The domain independence of Jk-integral is also demonstrated. The results obtained in this study show the effects of crack location and material property gradation profiles on stress intensity factors, energy release rate and T-stress.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12610136/index.pdf
Date01 November 2008
CreatorsArman, Eyup Erhan
ContributorsDag, Serkan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0015 seconds