The factors limiting the performance of computer software periodically undergo sudden shifts, resulting from technological progress, and these shifts can have profound implications for the design of high performance codes. At the present time, the speed with which hardware can execute a single stream of instructions has reached a plateau. It is now the number of instruction streams that may be executed concurrently which underpins estimates of compute power, and with this change, a critical limitation on the performance of software has come to be the degree to which it can be parallelised. The research in this thesis is concerned with the means by which codes for linear programming may be adapted to this new hardware. For the most part, it is codes implementing the simplex method which will be discussed, though these have typically lower performance for single solves than those implementing interior point methods. However, the ability of the simplex method to rapidly re-solve a problem makes it at present indispensable as a subroutine for mixed integer programming. The long history of the simplex method as a practical technique, with applications in many industries and government, has led to such codes reaching a great level of sophistication. It would be unexpected in a research project such as this one to match the performance of top commercial codes with many years of development behind them. The simplex codes described in this thesis are, however, able to solve real problems of small to moderate size, rather than being confined to random or otherwise artificially generated instances. The remainder of this thesis is structured as follows. The rest of this chapter gives a brief overview of the essential elements of modern parallel hardware and of the linear programming problem. Both the simplex method and interior point methods are discussed, along with some of the key algorithmic enhancements required for such systems to solve real-world problems. Some background on the parallelisation of both types of code is given. The next chapter describes two standard simplex codes designed to exploit the current generation of hardware. i6 is a parallel standard simplex solver capable of being applied to a range of real problems, and showing exceptional performance for dense, square programs. i8 is also a parallel, standard simplex solver, but now implemented for graphics processing units (GPUs).
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:601302 |
Date | January 2013 |
Creators | Smith, Edmund |
Contributors | Hall, Julian; Grothey, Andreas |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/8833 |
Page generated in 0.0016 seconds