abstract: Mixture experiments are useful when the interest is in determining how changes in the proportion of an experimental component affects the response. This research focuses on the modeling and design of mixture experiments when the response is categorical namely, binary and ordinal. Data from mixture experiments is characterized by the perfect collinearity of the experimental components, resulting in model matrices that are singular and inestimable under likelihood estimation procedures. To alleviate problems with estimation, this research proposes the reparameterization of two nonlinear models for ordinal data -- the proportional-odds model with a logistic link and the stereotype model. A study involving subjective ordinal responses from a mixture experiment demonstrates that the stereotype model reveals useful information about the relationship between mixture components and the ordinality of the response, which the proportional-odds fails to detect.
The second half of this research deals with the construction of exact D-optimal designs for binary and ordinal responses. For both types, the base models fall under the class of Generalized Linear Models (GLMs) with a logistic link. First, the properties of the exact D-optimal mixture designs for binary responses are investigated. It will be shown that standard mixture designs and designs proposed for normal-theory responses are poor surrogates for the true D-optimal designs. In contrast with the D-optimal designs for normal-theory responses which locate support points at the boundaries of the mixture region, exact D-optimal designs for GLMs tend to locate support points at regions of uncertainties. Alternate D-optimal designs for binary responses with high D-efficiencies are proposed by utilizing information about these regions.
The Mixture Exchange Algorithm (MEA), a search heuristic tailored to the construction of efficient mixture designs with GLM-type responses, is proposed. MEA introduces a new and efficient updating formula that lessens the computational expense of calculating the D-criterion for multi-categorical response systems, such as ordinal response models. MEA computationally outperforms comparable search heuristics by several orders of magnitude. Further, its computational expense increases at a slower rate of growth with increasing problem size. Finally, local and robust D-optimal designs for ordinal-response mixture systems are constructed using MEA, investigated, and shown to have high D-efficiency performance. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2016
Identifer | oai:union.ndltd.org:asu.edu/item:38452 |
Date | January 2016 |
Contributors | Mancenido, Michelle V. (Author), Montgomery, Douglas C (Advisor), Pan, Rong (Advisor), Borror, Connie M (Committee member), Shunk, Dan L (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 195 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.002 seconds