Mixture experiments are widely applied. The Scheffé quadratic polynomial is the most popular mixture model in industry due to its simplicity, but it fails to accurately describe the behaviour of response variables that deviate greatly from linear blending. Higherorder Scheffé polynomials do possess the ability to predict such behaviour but become increasingly more complex to use and the number of estimable parameters grow exponentially [15]. A parameter-parsimonious mixture model, developed from the linear blending rule with weighted power means and Wohl's Q-fractions, is introduced. Bootstrap is employed to analyse the model statistically. The model is proved to be flexible enough to model non-linear deviations from linear blending without losing the simplicity of the linear blending rule. / Dissertation (MSc)--University of Pretoria, 2011. / Chemical Engineering / unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/27481 |
Date | 23 August 2011 |
Creators | Ackermann, Maria Helena |
Contributors | Dr R Coetzer, Prof W W Focke, mia.ackermann@gmail.com |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Dissertation |
Rights | © 2011 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. |
Page generated in 0.0019 seconds