Le sommeil est défini comme un état comportemental de repos où nous perdons conscience de notre environnement et notre réactivité aux stimuli extérieurs est drastiquement réduite. Pourtant, lorsque nous dormons, l’appel par notre prénom ou à la sonnerie du réveil peuvent encore nous réveiller, suggérant qu’un certain degré de traitement des stimuli reste possible. Dans ce travail, nous soulevons la question de la profondeur du traitement de l’information extérieure pendant le sommeil. Nous avons enregistré simultanément l’activité cérébrale de sujets sains adultes en électro- et magnéto-encéphalographie (EEG et MEG) en réponse à des stimulations auditives, avant, pendant, et après une courte période de sommeil. Afin de tester la profondeur du traitement de l’information à travers la hiérarchie corticale, nous nous sommes concentrés sur les capacités de codage prédictif hiérarchique, qui permettent au cerveau d’anticiper les évènements futurs à partir d’une connaissance passée. Les prédictions sont faites à de nombreuses si ce n’est toutes les étapes de la hiérarchie corticale. Tester les différents niveaux de prédiction nous permet donc d’évaluer précisément à quel niveau l’intégration de l’information est interrompue. Nous avons d’abord testé les capacités du cerveau à détecter la nouveauté auditive. Nous avons présenté aux sujets des séquences de sons comprenant des régularités temporelles à courte (locale) ou à longue (globale) échelle de temps, et analysé les réponses cérébrales à des sons violant ces régularités. Les réponses cérébrales à ces violations locales ou globales se traduisent respectivement en EEG à l’éveil par l’émergence de deux signaux d’erreur de prédiction : la négativité de mismatch (MMN) et la P300. Notre analyse révèle que la MMN et la P300 disparaissent toutes deux dans le sommeil avec la perte des activations des aires associatives préfrontales et pariétales. Au cours de l’endormissement, la MMN diminue progressivement, tandis que la P300 disparait brutalement avec la perte de conscience des stimuli. Ce comportement tout-ou-rien renforce l’hypothèse que la P300 est un marqueur de la conscience. Malgré tout, nous avons montré que le cerveau détecte toujours les nouveaux sons et peut s’y habituer, mais seulement dans un contexte limité d’adaptation sensorielle de bas niveau. Après avoir démontré la perte des capacités de codage prédictif dans le sommeil dans le cadre de régularités statistiques arbitraires et nouvellement acquises, dans une deuxième série d’expériences nous avons testé la capacité du cerveau endormi à établir des prédictions sur les sons à venir dans le cadre de connaissances sémantiques connues déjà stockées en mémoire à long terme. Nous avons présenté à des sujets endormis des opérations arithmétiques simples, comme “deux plus deux égal neuf”, et nous avons enregistré les réponses cérébrales aux résultats corrects et aux résultats faux. Nous avons découvert que le cerveau était toujours capable de détecter les violations arithmétiques dans le sommeil, avec des activations en partie similaires à celles de l’éveil. Nous suggérons que, bien que le sommeil prévienne tout calcul explicite, il y a conservation des signaux d’erreur de prédiction pour les opérations arithmétiques simple déjà mémorisées. Ce travail clarifie à quel niveau l’intégration de l’information auditive est interrompue pendant le sommeil, et quelles fonctions cognitives persistent ou s’altèrent. La persistance de l’adaptation sensorielle et des capacités de prédiction à partir de connaissances déjà mémorisées sont probablement responsables de la réactivité résiduelle qui peut être observée pendant le sommeil alors que les sujets sont inconscients. Finalement, ces résultats aident aussi à mieux comprendre pourquoi un stimulus donné sera traité ou non dans le sommeil. (...) / Sleep can be defined as a behavioral state of rest in which consciousness of external stimuli vanishes and responsiveness to the environment is drastically reduced. When we sleep, however, we may still react and wake up to our name or to the alarm clock, suggesting that some processing of external stimuli remains. We address in the present work the question of how deeply external information is processed during sleep. We recorded brain activity in adult human subjects simultaneously in electro and magnetoencephalography (EEG and MEG) in response to auditory stimulation, before, during and after a short period of sleep. In order to test information integration through the brain hierarchy, we focused on hierarchical predictive coding capabilities, which enable the brain to anticipate the future from previous knowledge. Predictions occur at many if not all steps of the cortical hierarchy. Testing different levels of predictions enables us to assess the steps at which information integration is disrupted during sleep. We first tested the capacity of the sleeping brain to detect auditory novelty. We analyzed brain responses to violations of local and global temporal regularities, which are respectively reflected in EEG during wakefulness by two successive prediction error signals, the mismatch negativity (MMN) and the P300. Our analysis revealed that both the MMN and the P300 vanish during sleep, along with the loss of activations in prefrontal and parietal associative areas. The MMN gradually decreased in the descent to sleep, whereas the P300 vanished abruptly with the loss of awareness during N1 sleep. This all-or-none behavior strongly reinforces the hypothesis that the P300 is a marker of consciousness. Even so, we showed that sounds still activate sensory cortices, and that the brain remains able to detect new sounds and to habituate to them, but only in the limited context of sensory adaptation. Having demonstrated the disruption of predictive coding for arbitrary and newly acquired statistical regularities, in a second set of experiments we tested the capacity of the sleeping brain to develop predictions of future auditory stimuli for over-learned semantic knowledge stored in long-term memory. We presented sleeping subjects with simple arithmetic facts such as “two plus two is nine” and recorded brain responses to correct or incorrect results. We discovered that the sleeping brain was still able to detect arithmetic violations, with activations in part similar to wakefulness. We suggest that, although sleep disrupts explicit arithmetic computations, there is a preservation of prediction error signals for arithmetic facts stored in long-term memory. The present work clarifies the steps at which auditory information integration is disrupted during sleep, and which cognitive functions remain or vanish. The preservation of low-level sensory adaptation and of predictions from long term memory may account for the residual responsiveness that can be observed during sleep, while subjects are unconscious. Finally, these results also help to better understand why a given stimulus may or may not be processed during sleep. The depth of information integration is function of the ongoing spontaneous oscillations of the sleeping brain, but also of the nature of the stimulus, i.e. its salience, its knowledge, and its relevance.
Identifer | oai:union.ndltd.org:theses.fr/2015USPCB113 |
Date | 26 November 2015 |
Creators | Strauss, Mélanie |
Contributors | Sorbonne Paris Cité, Dehaene, Stanislas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds