Dynamic Spectrum Access (DSA), also known as Dynamic Spectrum Management, is the method of utilizing a set of spectrum techniques in real time to provide the ability to share wireless channels between Primary (or licensed) users (PUs) and Secondary (or unlicensed) users (SUs). The system is so designed that under normal circumstances, the PUs always get priority, but DSA enables the SUs to use the licensed bands as long as they do not create any interference on the PUs. Hence, the goal of utilizing the spectrum more efficiently can be achieved. Though DSA has been researched extensively as a new concept, it is still under development and several challenges remain unsolved. DSA is recognized as a vital component in 5G-and-beyond network deployment scenarios. Although 5G networks can work in sub-6GHz bands, higher frequency bands (like 28 GHz and 60 GHz) are particularly of interest as they offer much larger bandwidth and regulatory agencies have been announcing licensing plans for these emerging bands. These higher frequency bands could enable extremely high-speed wireless communication by leveraging the gains of highly directional antennas. Smart devices used worldwide has already surpassed 22 billion and is only going to increase in the coming years. Channel allocation and high-speed communication will be the backbone to drive this enormous network of devices, and DSA and directional antenna communication mechanisms will be the key factors governing the future communication infrastructure.
In this dissertation, we show how omnidirectional DSA techniques can be applied towards directional cases, i.e., replacing the omnidirectional antennas with directional antennas working in the millimeter wave (mmWave) bands. MmWave enables ultra-high speed transmission and reception, but with some caveats; these antennas should be deployed in line-of-sight (LOS) and a lot of transmission and reception properties depend on how the antennas are aligned, their steering angle, beamwidth and field-of-view (FOV). It is a challenge to take into consideration all of these factors and come up with a solution of ideal signal-to-interference-plus-noise-ratio (SINR) combination between a set of transmitters and receivers. This dissertation sets a guideline on how small cell mmWave transmitters and receivers can be deployed in a densely populated area by working in a coalition (such as by smartly allocating channels to coalitions with more users). Mobility and varying orientations of mmWave as part of dynamic coalitions present new challenges we undertake. Hence, an area where this research can be very apt is vehicular networks, leveraging the high-speed communication provided by mmWave networks. Since the nodes in this case, the vehicles, will be primarily in motion, our research can be applied especially, because we are investigating the antenna designs by considering their beamwidths, steering angles power budgeting.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1018 |
Date | 01 January 2023 |
Creators | Seth, Sayanta |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Thesis and Dissertation 2023-2024 |
Page generated in 0.1441 seconds