Traceability data provides the knowledge on dependencies and logical relations existing amongst artefacts that are created during software development. In reasoning over traceability data, conclusions can be drawn to increase the quality of software.
The paradigm of Model-driven Software Engineering (MDSD) promotes the generation of software out of models. The latter are specified through different modelling languages. In subsequent model transformations, these models are used to generate programming code automatically. Traceability data of the involved artefacts in a MDSD process can be used to increase the software quality in providing the necessary knowledge as described above.
Existing traceability solutions in MDSD are based on the integral model mapping of transformation execution to generate traceability data. Yet, these solutions still entail a wide range of open challenges. One challenge is that the collected traceability data does not adhere to a unified formal definition, which leads to poorly integrated traceability data. This aggravates the reasoning over traceability data. Furthermore, these traceability solutions all depend on the existence of a transformation engine.
However, not in all cases pertaining to MDSD can a transformation engine be accessed, while taking into account proprietary transformation engines, or manually implemented transformations. In these cases it is not possible to instrument the transformation engine for the sake of generating traceability data, resulting in a lack of traceability data.
In this work, we address these shortcomings. In doing so, we propose a generic traceability framework for augmenting arbitrary transformation approaches with a traceability mechanism. To integrate traceability data from different transformation approaches, our approach features a methodology for augmentation possibilities based on a design pattern. The design pattern supplies the engineer with recommendations for designing the traceability mechanism and for modelling traceability data.
Additionally, to provide a traceability mechanism for inaccessible transformation engines, we leverage parallel model matching to generate traceability data for arbitrary source and target models. This approach is based on a language-agnostic concept of three similarity measures for matching. To realise the similarity measures, we exploit metamodel matching techniques for graph-based model matching. Finally, we evaluate our approach according to a set of transformations from an SAP business application and the domain of MDSD.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28406 |
Date | 17 February 2014 |
Creators | Grammel, Birgit |
Contributors | Aßmann, Uwe, Paige, Richard, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds