A common architecture for electric vehicles is to have two electric machines one each on the front and rear axle. Despite the redundancy, this configuration ensures performance. Being energy efficient is equally important for electric vehicles to deliver a sufficiently high range. Hence, operating a single machine at low to medium torque requirement is desirable. A clutch can be implemented on the front axle and its engagement dynamically controlled to reduce the magnetic drag losses in the front machine. With clutch disengaged, the entire torque will be delivered by the rear machine causing it to heat up quickly. As electric machine and inverter losses are also temperature dependent, this work attempts to derive an optimal torque split strategy between the two machines considering thermal effects. An upper-temperature limit for both electric machine and inverter is imposed for component protection. Thermal models for the electric machine, inverter and coolant circuit are simplified using system identification and model order reduction approach. Dynamic optimal torque split is realized by minimizing the energy loss over the entire drive cycle. Dynamic programming is used to investigate the benefits of including thermal losses and to generate a benchmark solution for optimal torque split strategy. Further, two online controllers are developed, one based on non-linear model predictive control and the other being a static controller with added heuristic rules to prevent temperatures of critical components to exceed the limits. A high-fidelity plant model was developed using VSIM as master and GT-Suite thermal model as slave to compare the performance of these controllers. The results show that it is possible to obtain decent thermal performance of electric motor and inverter with one node lumped parameter thermal model and a five-node lumped parameter model for the coolant circuit. Including thermal dynamics in the controller can constraint the temperature within the limits and give an optimal torque split. The benefit of adding temperature-dependent thermal maps is found to be limited to certain operating regions. The static controller with torque split based on instantaneous power loss also performed well for the given configuration. The major contribution to energy saving was obtained by dynamic disengagement of clutch in the form of reduced magnetic drag losses. / En vanlig arkitektur för elfordon är att ha två elmaskiner en vardera på fram- och bakaxeln. Trots redundansen säkerställer denna konfiguration prestanda. Att vara energieffektiv är lika viktigt för att elfordon ska leverera en tillräckligt hög räckvidd. Det är därför önskvärt att driva en enda maskin med lågt till medelhögt vridmoment. En koppling kan implementeras på framaxeln och dess ingrepp kan styras dynamiskt för att minska de magnetiska motståndsförlusterna i den främre maskinen. Med kopplingen urkopplad kommer hela vridmomentet att levereras av den bakre maskinen vilket gör att den snabbt värms upp. Eftersom förluster av elektriska maskiner och växelriktare också är temperaturberoende, försöker detta arbete härleda en optimal vridmomentsdelningsstrategi mellan de två maskinerna med tanke på termiska effekter. En övre temperaturgräns för både elektrisk maskin och växelriktare är införd för komponentskydd. Termiska modeller för den elektriska maskinen, växelriktaren och kylvätskekretsen förenklas med hjälp av systemidentifiering och modellbeställningsreduktion. Dynamisk optimal vridmomentdelning realiseras genom att minimera energiförlusten under hela körcykeln. Dynamisk programmering används för att undersöka fördelarna med att inkludera termiska förluster och för att generera en benchmarklösning för optimal vridmomentsdelningsstrategi. Vidare utvecklas två online-styrenheter, en baserad på icke-linjär modell för prediktiv styrning och den andra är en statisk styrenhet med tillagda heuristiska regler för att förhindra att temperaturer på kritiska komponenter överskrider gränserna. En högfientlig anläggningsmodell utvecklades med VSIM som master och GT-Suite termisk modell som slav för att jämföra prestandan hos dessa styrenheter. Resultaten visar att det är möjligt att erhålla hyfsad termisk prestanda för elmotor och växelriktare med en termisk modell med en nodklumpad parameter och en femnodsmodell med klumpparametrar för kylvätskekretsen. Att inkludera termisk dynamik i regulatorn kan begränsa temperaturen inom gränserna och ge en optimal vridmomentfördelning. Fördelen med att lägga till temperaturberoende termiska kartor har visat sig vara begränsad till vissa driftsområden. Den statiska styrenheten med vridmomentdelning baserad på momentan effektförlust fungerade också bra för den givna konfigurationen. Det största bidraget till energibesparingen erhölls genom dynamisk urkoppling av kopplingen i form av minskade magnetiska motståndsförluster.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-312164 |
Date | January 2021 |
Creators | Yadav, Dhananjay |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:948 |
Page generated in 0.0027 seconds