Por meio do monitoramento da evolução da temperatura da mistura cimento-madeira, pode-se utilizar esta informação como uma série temporal. O objetivo deste estudo foi utilizar modelos de séries temporais para descrever as séries de temperatura do experimento constituído por diferentes espécies associadas a resíduos de Candeia na produção de painéis particulado e compara-las duas a duas para averiguar se foram geradas pelo mesmo processo estocástico. Inicialmente foi realizado um estudo para avaliar a estacionariedade das séries utilizando o correlograma e o teste da raiz unitária de Dickey-Fuller, na qual todas as séries apresentaram não estacionariedade, para o tratamento de 25% Candeia e Eucalipto com tratamento prévio de água foi dita uma série I(2) e pelos critérios AIC, BIC e MAPE o melhor modelo foi ARIMA(2, 2, 2), para o tratamento de 50% Candeia e Eucalipto também com tratamento prévio de água foi dita uma série I(1) e pelos critérios o melhor modelo foi ARIMA(4, 2, 2), para o tratamento de 75% Candeia e Eucalipto com tratamento prévio de água foi dita uma série I(1) com o modelo ARIMA(5, 1, 0), e para o tratamento de 25% Candeia e Eucalipto sem tratamento prévio de água foi dita uma série I(1) com o modelo ARIMA(2, 1, 2). Em relação à comparação das séries temporais contempladas neste trabalho é possível concluir que as mesmas são diferentes entre si, ou seja, não foram geradas pelo mesmo processo estocástico. / By monitoring the temperature evolution of the cement-wood mixture, one can utilize this information as a time series. The objective of this study was to utilize time series models to describe the temperature series from an experiment, consisting of different species associated to Candeia residuals in the production of particleboard panels, and do a pairwise comparison to verify if they were generated from the same stochastic process. Initially it was realized the Dickey-Fuller unit root test to verify series stationarity, which indicated that all series were not stationary. For the 25% Candeia and Eucalyptus treatment with previous water treatment the series was best modelled by an ARIMA(2, 2, 2) as evidenced by the AIC, BIC and MAPE criteria. For the 50% Candeia and Eucalyptus treatment also with previous water treatment the series was best modelled by an ARIMA(4, 2, 2) as indicated by the same criteria. Finally for the 75% Candeia and Eucalyptus treatment with previous water treatment and the 25% Candeia and Eucalyptus treatment without previous water treatment the best models were the ARIMA(5, 1, 0) and the ARIMA(2, 1, 2) respectively. In relation to the comparison of the time series contemplated in this study it is possible to conclude that they are different, that is, they were not generated by the same stochastic process.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07042015-102815 |
Date | 23 January 2015 |
Creators | Valiana Alves Teodoro |
Contributors | Taciana Villela Savian, Vitor Augusto Ozaki, Rosimeire Cavalcante dos Santos |
Publisher | Universidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds