Este trabalho foi desenvolvido com o intuito de se estabelecer uma metodologia para a classificação das cores de imagens digitais em cores perceptuais para se gerar um vetor de características que permita recuperar imagens através de seu conteúdo em uma base de dados. Em trabalhos e estudos correlatos analisados, as metodologias de agrupamento das diversas cores possíveis de uma imagem não permitem uma associação entre a cor digitalizada e a cor percebida por seres humanos. Estudos mostram que a maioria das culturas humanas associam às cores apenas onze termos: vermelho, amarelo, violeta, azul, verde, rosa, marrom, preto, branco, laranja e cinza. Este trabalho propõe, portanto, uma metodologia baseada em regras da lógica fuzzy, que permite associar a todas as possíveis cores de imagens digitais uma das onze cores culturais definidas, criando assim um histograma perceptual de cores. Isso permitiu a geração de um vetor de características para a recuperação de imagens baseada em conteúdo em uma base de dados. / This work aims at establishing a digital image classification methodology based on perceptual colors, by generating a feature vector that allows retrieving images from a database by their content. In related works the methodologies of grouping the diverse possible colors of an image do not allow associate digitized colors and those colors perceived by human beings. Studies show that the majority of human being culture associates only eleven terms to all the possible colors: red, yellow, blue, green, pink, brown, black, white, purple, orange and gray. This work purpose a methodology based on fuzzy logic that allows to associate the eleven cultural color terms with all of digitized colors by a perceptual color histogram. The image color quantization generates a feature vector used for content-based image retrieval. The results show that it is possible to use the perceptual color histogram for CBIR and in the semantic gap reduction.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22112006-135045 |
Date | 14 September 2006 |
Creators | Silva, Katia Veloso |
Contributors | Gonzaga, Adilson |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo somente para a comunidade da Universidade de São Paulo. |
Page generated in 0.0025 seconds