Mouse polyomavirus (MPyV) is a small non-enveloped virus. Its capsid consists of 72 pentamers of the major capsid protein VP1. The central cavity of each VP1 pentamer contains one minor capsid protein, either VP2, or VP3. The minor capsid proteins are dispensable for capsid formation, but their presence is required for infection of the host cell, presumably because of their anticipated functions during virus entry. After internalization, MPyV virions traffic to endoplasmic reticulum (ER). VP2 and VP3 have been proposed to function as factors responsible for penetration of ER membranes, which is required for subsequent delivery of the viral DNA into the nucleus, a key step of the early phase of MPyV infection. Three hydrophobic domains were predicted in the sequence of VP2 and VP3. First in the unique Nterminal part of VP2, second and third in the common part of VP2 and VP3. The third domain corresponds to C-terminal VP1binding alpha-helix. It has been previously found in our laboratory, that VP2 and VP3 fused to N-terminus of EGFP, when expressed in mammalian cells, display properties similiar to the wild-type VP2 and VP3, namely affinity to intracellular membranes and high cytotoxicity. Expression plasmids carrying mutated VP2 and VP3 fused to Nterminus of EGFP were prepared to determine the hydrophobic...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:284890 |
Date | January 2010 |
Creators | Vít, Ondřej |
Contributors | Němečková, Šárka, Forstová, Jitka |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds