Return to search

Étude de la transition vitreuse de verres organiques à base de triazine par simulation atomistique

Depuis la nuit des temps, la matière est connue sous trois états, soient l'état solide, l'état liquide et l'état gazeux. Depuis, de nouveaux états ont été découverts. Les études au sein des laboratoires des professeurs Soldera et Lebel se concentrent sur ces états particuliers. Ils travaillent surtout sur les transitions de phases menant à ces états. Lorsqu'on parle de solide, on fait généralement référence à l'état cristallin, qui est un réseau bien structuré où les interactions à longue portée sont importantes et bien définies. Il existe toutefois une autre forme de solide où le désordre semble régner. Les interactions à longue portée ne sont pas prépondérantes. Il s'agit de l'état vitreux. Le passage de l'état liquide à l'état vitreux est appelé la transition vitreuse, et est caractérisé par une température, T[indice inférieur g] . Les principaux composés menant à l'état vitreux sont les polymères et les verres inorganique [i.e. inorganiques] tels que l'oxyde de silice, très répendus [i.e. répandus] et grandement étudiés. Les verres organiques sont une autre famille de composés qui présentent une phase amorphe stable. Le développement des technologies de pointe a suscité un intérêt pour les verres moléculaires dû à leurs propriétés intéressantes telles que leur structure bien définie et une bonne stabilité thermique. La T[indice inférieur g] détermine le domaine de températures où il peut être utilisé selon l'application recherchée. Les verres moléculaires ont beaucoup de potentiel en industrie, mais ils constituent une famille de matériaux fonctionnels méconnus. S'il reste beaucoup à apprendre sur les polymères, tout reste à apprendre sur les verres moléculaires. Il y a moins d'une vingtaine d'années que la triazine a commencé à être étudiée comme précurseur de verres moléculaires. La synthèse de verres efficaces peut être fastidieuse et ne procure pas nécessairement les propriétés recherchées. C'est pour cette raison que cette étude a été entreprise. L'idée de base de ce travail vise à trouver des moyens de prédire la T[indice inférieur g] , la première propriété recherchée, et ce, en se basant seulement sur la structure moléculaire. Pour relever ce défi, la voie considérée est la simulation atomistique faisant appel à un modèle tout-atome. Cette méthode a déjà fait ses preuves dans l'étude de la T[indice inférieur g] de polymères vinyliques, par les travaux du groupe du professeur Soldera. Bien que le principe de base soit resté le même, il [a] fallu apporter de légères modifications quant à son application aux systèmes étudiés. Suite à la paramétrisation du champ de forces utilisé, pcff, la simulation d'une quinzaine de molécules dont la T[indice inférieur g] expérimentale est connue a pu être conduite. Les résultats obtenus ont permis de révéler une linéarité entre les valeurs obtenues par simulation et les données expérimentales. Il est important de noter que la méthode a permis de distinguer les différents verres moléculaires étudiés bien que la seule différence entre les composés soit le groupement fonctionnel. Cet accord a permis d'effectuer diverses analyses au niveau moléculaire afin de mieux comprendre les facteurs qui influencent les valeurs de T[indice inférieur g] , et donc in fine d'apporter des indices pour une meilleure compréhension de cette transition fort complexe. Les fonctions de distribution radiale ainsi que la rotation des différentes fonctionnalités par rapport au noyau commun triazine, ont ainsi été regardées.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/5760
Date January 2012
CreatorsPlante, André
ContributorsSoldera, Armand, Lebel, Olivier
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeMémoire
Rights© André Plante

Page generated in 0.0025 seconds