Return to search

Mathematical modeling and simulation of apoptosis and nitric oxide effects

Apoptosis, or programmed cell death, is a process of crucial importance for maintaining a homeostatic balance between cell proliferation and death. In the present study a new mathematical model is presented that draws attention to the possible occurrence of bistability in mitochondria-dependent apoptotic pathways, as well as a transition from bistable to monostable behavior -either apoptotic or cytoprotective, under well-defined conditions. Bistability is proposed to be conferred by positive feedback loops that enhance caspase-3 activation pathways through mitochondria and by kinetic cooperativity in the formation of an apoptosome complex. It essentially ensures that cells will not die in the presence of relatively small pro-apoptotic effects, but will undergo apoptosis when perturbing conditions or levels of pro-apoptotic agents exceed certain threshold values. The passage from bistable to monostable cytoprotective behavior i.e., resistance to apoptosis, may be induced by decreasing the levels of Bax, a pro-apoptotic enzyme, in agreement with experimental observations; while the opposite passage to a pro-apoptotic monostable state may be triggered by a change in the levels of mitochondrial permeability transition pore complexes (PTPCs). Further computations shed light on the origins of the experimentally observed dichotomous effects of nitric oxide (NO), demonstrating that the relative concentrations of anti- and pro-apoptotic reactive NO species, and the interplay of glutathione, dominate the cell fate at long times (of the order of hours). Transient apoptotic effects may be observed in the presence of high levels of intracellular non-heme iron, the duration of which may reach up to hours, despite the eventual convergence to an anti-apoptotic state. The computational results thus point to the importance of the precise timing of NO production and external stimulation in determining the eventual pro- or anti-apoptotic role of NO. The same mathematical model (network of interactions) applied with different model parameters to different cell types demonstrates that cells with high levels of intracellular non-heme iron are resistant to apoptosis while those subjected to high levels of superoxide undergo pathological death, consistent with experimental observations.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-09072007-103743
Date10 September 2007
CreatorsBagci, Elife Zerrin
ContributorsTakis Benos, Timothy R. Billiar, G. Bard Ermentrout, Guillermo Romero, Yoram Vodovotz, Ivet Bahar
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-09072007-103743/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds